Corresponding author: Liliya Logoyda ( logojda@tdmu.edu.ua ) Academic editor: Plamen Peikov
© 2021 Оlena Golembiovska, Oleksii Voskoboinik, Galina Berest, Sergiy Kovalenko, Liliya Logoyda.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Golembiovska О, Voskoboinik O, Berest G, Kovalenko S, Logoyda L (2021) Method development and validation for the determination of residual solvents in quinabut API by using gas chromatography. Message 2. Pharmacia 68(1): 53-59. https://doi.org/10.3897/pharmacia.68.e52119
|
Aim. The aim of study was to develop and validate a simple, precise and accurate method using gas chromatography for analysis of residual solvents – acetone and 2-propanol – in quinabut API.
Materials and methods. All experiments were performed on a gas chromatographic system equipped with FID detector (Shimadzu GC System) using the DB-624 (30 m × 0.32 mm ID, 3.0 μm film sickness) column as stationary phase. Nitrogen was used as carrier gas with flow rate 7.5 mL/ min. Split ratio was 1:5, injector temperature was 140 °C, detector temperature was 250 °C, oven temperature was programmed from 40 °C (2 min) to 50 °C at 1 °C/min and then increased at a rate of 15 °C/min up to 215 °C; and maintained for 2 min. All solutions were prepared using water as diluent.
Results. This proposed method is assessed for separation of residual solvent from quinabut with quantification. The obtained results are compared with the corresponding specified limits of ICH standard guidelines. The method validation was done by evaluating specificity, limit of detection (LOD) and limit of quantitation (LOQ), linearity, accuracy, repeatability, ruggedness, system suitability and method precision of residual solvents as indicated in the ICH harmonized tripartite guideline. The separation between acetone and 2-propanol peaks is 2.07. Hence method was found to be specific. The linear relationship evaluated across range of 15 to 180% for acetone and 2-propanol of ICH specified limit of residual solvents. The graphs of theoretical concentration versus obtained concentration are linear and the regression coefficients ‘R’ for residual solvents were more than 0.9968. The values of LOD and LOQ were much less than the lower limit of the concentration range and cannot affect the accuracy of the test. The technique was characterized by high intra-laboratory accuracy at concentrations close to the nominal acetone and 2-propanol concentration. All solutions were stable in water for at least 1 hour when stored at room temperature.
Conclusion. A simple, specific, accurate, precise and rugged gas chromatography method was developed and validated for the quantification of residual solvents present in quinabut API through an understanding of the synthetic process, nature of solvents and nature of stationary phases of columns. The residual solvents acetone and 2-propanol were determined.
Gas Chromatography, Quinabut, Residual Solvents, Validation
Organic solvents are routinely applied during synthesis of drug substances, excipients, or during drug product formulation (
Inadequate attention has been paid during pharmaceutical investigations. Gas chromatography (GC) is a technique where the liquid or solid sample is set in a closed vessel until the volatile components reach equilibrium between the sample and the gas volume above i.e. the so called “headspace”. An aliquot of the headspace is sampled and introduced into gas chromatographic column for analysis. Regulatory agencies and pharmacopoeias suggest gas chromatography as the most suitable technique for residual solvent testing for active substances and formulations soluble in water. Residual solvent specification limits, set in accordance with the toxicity of solvents, vary from a few ppm to thousands of ppm. GC determination of residual solvents is nowadays a mature technique (
Quinabut (Fig.
The manufacturing of active pharmaceutical ingredients (API) under GMP (good manufacturing practice) conditions requires adequate control of the quality of the different ingredients involved in the synthesis. Organic residual solvents must therefore be controlled, and their purity determined, before any GMP synthesis. The acceptable limits for these substances are given in ICH guidelines (Guideline for Residual solvents, Q3C (
Acetone and 2-propanol (IPA) are used as solvents in quinabut manufacturing steps and not removed consistently. Acetone the same as IPA belongs to 3 class of residual solvents and may be regarded as less toxic and of lower risk to human health.
The purpose of this research study was to develop an accurate and precise gas chromatography method for analysis of residual solvents – acetone and 2-propanol – in quinabut API.
Quinabut API (purity 99.9%) was synthesized and characterized in-house. Used chemicals – acetone and 2-propanol – were obtained from Sigma – Aldrich, USA. Water Milli Q has been used as a diluent and was obtained from in-house Milli Q water instrumentation.
A gas chromatograph (Shimadzu GC System ser. 2014) with autosampler AOC-20 series was used to load the sample. An analytical balance (ME204 from Mettler Toledo) and auto pipette (100–1000 μL from Eppendorf) were used.
For gas chromatographic analysis, a DB-624 fused silica capillary column from Agilent (G43 phase: 6% cyanopropyl phenyl, 94% polydimethylsiloxane) (30 m length, ID 0.32 mm, and 3 μm film thickness) was used. The temperature of the injection port was maintained at 140 °C at a split ratio of 1:5, with nitrogen as a carrier gas (flow rate of 7.5 mL/min). The temperature of the detector was set at 250 °C. Oven temperature was programmed from 40 °C (2 min) to 50 °C at 1 °C/min and then increased at a rate of 15 °C/min up to 215 °C; and maintained for 2 min. A volume of 1 ml solutions was injected into the GC injection port.
The chromatographic system was considered suitable if relative standard deviation of the peak area for 5 injections not more than 10.0%.
A common standard stock solution in water containing all the known residual solvents of quinabut API (i.e., acetone and IPA) was prepared in such a way that it had a final concentration of 5000 ppm for acetone and 5000 ppm for IPA.
Spiked model solutions for specificity, linearity, accuracy and precision were prepared using 1.0 g of quinabut API, 500 mg of IPA and 500 mg acetone in 50 ml of water. Further, 5 ml of this solution was diluted to 10 ml with diluent.
To obtain quinabut API sample solution 1.0 g of quinabut API was accurately weighed in a 20 ml volumetric flask containing 5 ml of diluent (water) and diluted up to the mark.
Final concentrations of all dilutions were achieved using auto pipette. All vials were immediately equipped with septum, metallic cap and crimped properly.
The method validation was done by evaluating specificity, limit of detection (LOD) and limit of quantitation (LOQ), linearity, accuracy, repeatability, robustness, system suitability and method precision of residual solvents as indicated in the ICH harmonized tripartite guideline (Guideline for Residual solvents, Q3C (
Specificity of the analytical method was performed by injecting both solvents IPA (5000 ppm) and acetone (5000 ppm), individually and blank (i.e. water) under the same chromatographic condition. System suitability of method was performed by injecting five replicates of standard solution. The system suitability was confirmed by resolution and % RSD.
For the instrumental method, LOD was determined as the lowest amount to detect and LOQ was the lowest amount to quantify by the detector. The LOD and LOQ were calculated by statistical methods (determined based on the standard deviation of the response and the slope).
Detector response linearity, accuracy and precision were assessed by investigation of nine model solutions of IPA and acetone prepared over the range 15–180% of specification limit (750 to 9000 ppm) in diluent.
Method reproducibility was determined by measuring repeatability and intermediate precision of peak area for IPA and acetone. The repeatability of method was determined by analyzing six replicate injections containing quinabut API spiking with IPA (5000 ppm) and acetone (5000 ppm). The inter-day precision was determined by performing injections of six freshly prepared spiked model solutions on different day and analyst.
Robustness of the method was assessed by deliberately altering the experimental conditions such as carrier gas flow rate (± 0.75 mL/min), column temperature program (± 2 °C), and injector port temperature (± 15 °C) by keeping all the other chromatographic conditions constant as described above.
Quinabut will be used in solid dosage form; the residual solvents in it should be quantified as per ICH guideline. According to ICH guideline Q3C (R6) on impurities: guideline for residual solvents it is considered that amounts of IPA and acetone of 50 mg per day or less (corresponding to 5000 ppm or 0.5%) would be acceptable without justification. Thus, proposed method was assessed for separation of residual solvent from quinabut API with quantification. The obtained results were compared with the corresponding specified limits of ICH standard guidelines.
Using the Shimadzu GC system suitability software, resolution between acetone and IPA was calculated. The criterion for system suitability was that the resolution between these residual solvents should not be less than 1.5 and it was found well above the minimum passing limit.
Also %RSD for acetone and IPA areas in five replicates of standard solution injections should not be more than 10%. Results indicate an acceptable level of precision for the analytical system (1.56% for acetone and 2.43% for IPA).
The quinabut API sample was spiked with acetone and 2-propanol individually and each sample was chromatographed to examine interference, if any, of the residual solvent peaks with each other.
The specificity parameters are shown in Table
Peak name | Retention time, min | The number of theoretical plates | Peak symmetry |
---|---|---|---|
Acetone | 3.83 | 21047 | 1.19 |
2-propanol | 4.06 | 23016 | 1.11 |
The separation between acetone and 2-propanol peaks was 2.07. Hence method was found to be specific.
The retention time for standards of acetone and 2-propanol was found to be 3.83 and 4.06 min, respectively. Chromatograms of blank, standard, specificity are shown in Figs
The linearity of the method was determined by making injections of acetone and IPA model spiked solutions over the range 15–180% of specification limit. Three replicates were performed at each level. The calibration curves were obtained with the average of peak area ratios of three replicates. The linearity data are shown in Tables
Thus, it can be concluded that the linearity of the method is confirmed over the entire concentration range (10–180%) for acetone and for 2-propyl alcohol.
Metrological characteristics of linear dependence are calculated by method of least squares for model solutions of acetone.
Parameter | Value | Critical values (15–180) %, g = 9 | Conclusion |
---|---|---|---|
b | 0.992379111 | – | – |
sb | 0.010586652 | – | – |
a | 0.005766911 | 1) ≤ 1.895*sa, | Valid |
2) if not executed 1), than ≤ 1.92 | |||
sa | 0.014219746 | – | – |
sr | 0.017029 | ≤ 1.58 | Valid |
r | 0.999823281 | ≥ 0.996865 | Valid |
Metrological characteristics of linear dependence are calculated by method of least squares for model solutions of IPA.
Parameter | Value | Critical values (15–180) %, g = 9 | Conclusion |
b | 1.00493247 | – | – |
sb | 0.026492986 | – | – |
a | -0.015926285 | 1) ≤ 1.895*sa, | Valid |
2) if not executed 1), than ≤ 1.92 | |||
sa | 0.035311827 | – | – |
sr | 0.042609153 | ≤ 1.58 | Valid |
r | 0.998858991 | ≥ 0.996865 | Valid |
The LODs and LOQs of residual solvents in quinabut API were determined based on the standard deviation of the response and the slope.
LOD (acetone) = 3.3 × sa/ b = 0.047%;
LOQ (acetone) = 10 × sa/ b = 0.143%;
LOD (IPA) = 3.3 × sa/ b = 0.0116%;
LOQ (IPA) = 10 × sa/ b = 0.351%.
The values of LOD and LOQ are much less than the lower limit of the concentration range and cannot affect the accuracy of the test. The LOQ values are well below the ICH specification limit of the residual solvents.
Accuracy, closeness of measured values and its actual or standard value, was determined by injecting known amount of residual solvent at placebo levels from 15% to 180% of standard solution. The recovery data of investigated residual solvents are listed in Tables
∆Z = 2.23% < max ∆AS = 3.0%, the technique is characterized by sufficient precision over the entire concentration range. If п = 9, then the technique has no significant systematic error as the magnitude (satisfies the criterion 1) and is not significantly different from zero, the criterion of practical insignificance δ% = 0.14% ≤ 0.96% (satisfies the criterion 2) (Table
The results of the analysis of model mixtures of quinabut API with acetone content.
Number of model solution | Weight, mg | Theoretical value, % | The peak area of acetone | Obtained value, % | Found in % to theoretical value |
---|---|---|---|---|---|
lin15 | 76.6 | 15.32 | 360513 | 15.46 | 100.89 |
lin20 | 102 | 20.40 | 476635 | 20.43 | 100.17 |
lin40 | 200 | 40.00 | 940261 | 40.31 | 100.78 |
lin60 | 299.8 | 59.96 | 1371118 | 58.78 | 98.04 |
lin80 | 401.3 | 80.26 | 1897507 | 81.35 | 101.36 |
lin100 | 499.8 | 99.96 | 2366792 | 101.47 | 101.51 |
lin120 | 617.5 | 123.50 | 2896049 | 124.16 | 100.54 |
lin140 | 713.2 | 142.64 | 3289593 | 141.03 | 98.87 |
lin180 | 899 | 179.80 | 4156937 | 178.22 | 99.12 |
Z̄, % | 100.14 | ||||
Relative standard deviation SDz, % | 1.20 | ||||
Relative confidence interval ∆Z = t (95%, g-1) × SDz = 1.860 × sz | 2.23% | ||||
∆AS | 3.00% | ||||
Systematic error δ = |Z̄ - 100| | 0.14% | ||||
The criterion for the insignificance of a systematic error: | Valid | ||||
1) δ ≤ ∆Z / 3 = 0.74 | |||||
2) if not executed 1), than δ ≤ 0.96 | Valid | ||||
Conclusion | Method is correct |
∆Z = 2.90% < ∆AS = 3.0%, the technique is characterized by sufficient precision over the entire concentration range. If п = 9, then the technique has no significant systematic error as the magnitude (satisfies the criterion 1) and is not significantly different from zero, the criterion of practical insignificance δ % = 0.48% ≤ 0.96% (satisfies the criterion 2) (Table
The results of the analysis of model mixtures of quinabut API with IPA content.
Number of model solution | Weight, mg | Theoretical value, % | The peak area of 2-propanol | Obtained value, % | Found in % to theoretical value |
---|---|---|---|---|---|
lin15 | 72.9 | 14.58 | 178085 | 14.46 | 99.21 |
lin20 | 102.2 | 20.44 | 252073 | 20.47 | 100.17 |
lin40 | 202.3 | 40.46 | 497321 | 40.39 | 99.84 |
lin60 | 307.1 | 61.42 | 731300 | 59.40 | 96.71 |
lin80 | 403.6 | 80.72 | 967239 | 78.56 | 97.33 |
lin100 | 500.2 | 100.04 | 1231646 | 100.04 | 100.00 |
lin120 | 599.5 | 119.90 | 1488921 | 120.94 | 100.86 |
lin140 | 700.7 | 140.14 | 1728933 | 140.43 | 100.21 |
lin180 | 897.9 | 179.58 | 2241279 | 182.05 | 101.37 |
Z̄, % | 99.52 | ||||
Relative standard deviation SDz, % | 1.56 | ||||
Relative confidence interval ∆Z = t (95%, g-1) × SDz = 1.860 × sz | 2.90% | ||||
∆AS | 3.00% | ||||
Systematic error δ = |Z̄ - 100| | 0.48% | ||||
The criterion for the insignificance of a systematic error: | Valid | ||||
1) δ ≤ ∆Z /3 = 0.96 | |||||
2) if not executed 1), than δ ≤ 0.96 | Valid | ||||
Conclusion | Method is correct |
Δintra shall not exceed the maximum permissible uncertainty of the method (Table
Solution number | Value Zi, % | |
---|---|---|
Analyst 1 | Analyst 2 | |
Solution 1 | 101.51 | 100.66 |
Solution 2 | 101.74 | 91.85 |
Solution 3 | 101.64 | 100.51 |
Solution 4 | 102.21 | 97.89 |
Solution 5 | 95.94 | 94.16 |
Z̄ | 100.61 | 97.01 |
Zintra, % | 98.81 | |
Sz, % | 2.62 | 3.91 |
SDintra Z̄, % | 3.66 | |
Δintra, % | 2.89 |
Thus, the technique was characterized by high intra-laboratory accuracy over the entire acetone concentration range, close to the nominal concentration.
Δintra shall not exceed the maximum permissible uncertainty of the method (Table
Solution number | Value Zi, % | |
---|---|---|
Analyst 1 | Analyst 2 | |
Solution 1 | 99.92 | 100.68 |
Solution 2 | 97.12 | 100.00 |
Solution 3 | 97.88 | 100.39 |
Solution 4 | 103.11 | 100.09 |
Solution 5 | 100.20 | 100.53 |
Z̄ | 99.65 | 100.34 |
Zintra, % | 99.99 | |
Sz, % | 2.34 | 0.29 |
SDintra Z̄, % | 1.61 | |
Δintra , % | 1.27 |
Thus, the technique was characterized by high intra-laboratory accuracy over the entire IPA concentration range, close to the nominal concentration.
This confirms that the method is accurate and precise for determination of residual solvent in quinabut API in routine analysis.
To test the robustness of the gas chromatographic method, the stability of solutions over time, the influence of the subjective factor (various analysts) were investigated. The method for determining the amount of residual solvents does not specify the time after which the peak area should be measured, so its stability was checked over time. Measurements of the areas of the peaks of the residual solvents were performed with a time interval of 15 min for 1 h for the model solution (A) and the standard solution (A0) (Tables
t, min | Average | RSDt, % | Δt, % | max δ, % | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | |||||
A0 | 2379374 | 2383254 | 2387936 | 2374158 | 2364781 | 2381181 | 0.0037 | 0.01 | 1.024 |
А | 2366797 | 2366794 | 2377154 | 2361725 | 2364696 | 2367433 | 0.0025 | 0.01 |
t, min | Average | RSDt, % | Δt, % | max δ, % | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | |||||
A0 | 1231646 | 1254793 | 1232487 | 1237983 | 1247215 | 1239227 | 0.0080 | 0.02 | 1.024 |
А | 1234567 | 1235476 | 1236123 | 1237825 | 1244674 | 1237733 | 0.0033 | 0.01 |
max δ = max∆AS*0.32 = 3.2*0.32 = 1.024.
Δt = t(95%,(nt-1))* RSDt = 2.13* RSDt < max δ = 1.024, the technique is stable over time.
From the results above, it is apparent that acetone and IPA model and standard solutions are stable in water for at least 1 hour when stored at room temperature.
The column temperature program, carrier gas flow and injection port temperature within ± 10% did not significantly affect the test results. The results were found to be within the assay variability limits during the entire process.
The developed method was applied to the research and quantification of IPA and acetone in quinabut API sample.
The residual solvent content is calculated by the formula:
where Аsamp – peak area of residual solvent in the sample solution; Astd – peak area of residual solvent in the standard solution; Cstd – concentration of residual solvent in the standard solution, mg/ml; Wsamp – weight of the sample, mg.
The obtained results for acetone and 2-propanol in the quinabut API sample levels was respectively 47.7 ppm and 354.9 ppm; which are widely inferior to the amount specified by the ICH guidelines (5000 ppm).
A simple, rapid and highly selective gas chromatography method was developed and validated for the quantification of residual solvents present in quinabut API through an understanding of the synthetic process, nature of solvents and nature of stationary phases of columns. The developed method is specific, accurate, precise and rugged as per ICH guidelines. The result of this validation shows that residual solvents (acetone and 2-propanol) can be analyzed in quinabut API in the range of 1–9000 ppm according to the method described in this article with reliability for further analytical studies.