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Abstract
Tumor necrosis factor-alpha converting enzyme (TACE) is considered as a pro-inflammatory cytokine which catalyzes the for-
mation of TNF-α from membrane bound TNF-α precursor protein. It has important role in various pathological diseases such as 
inflammation, anorexia, rheumatoid arthritis, cancer and viral replication. Despite the reporting of a variety of TACE inhibitors of 
diverse chemical scaffolds whether peptide, peptide-like compounds or others, the bioavailability and pharmacokinetic problems are 
reflected strongly on its clinical effectiveness. In this effort we employed a novel combination of k-nearest neighbor QSAR modeling 
to select the best critical ligand-TACE contacts capable of elucidation of TACE inhibitory bioactivity among a long list of inhibitors. 
The recurrence of one valid pharmacophore hypothesis among the successful models emerged the pharmacophore to be used as 3D 
search queries to screen the National Cancer Institute’s structural database for new TACE inhibitors. Eight potent TACE inhibitors 
were discovered with inhibition percentage exceeding 50% at 100 μM inhibitor concentration.
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Introduction

Tumor Necrosis Factor (TNF)-α is a pro-inflammatory 
cytokine produced by different types of cells, i.e., mono-
cytes, macrophages, neutrophils, T-cells, mast cells, epi-
thelial cells, osteoblasts and dendritic cells. Several patho-
logical conditions such as Crohn’s disease, ulcerative 
colitis, diabetes, multiple sclerosis, atherosclerosis, psori-
asis and stroke are caused by over-expression of TNF-α. 

Furthermore, evidence exists that TNF plays a critical role 
in the origin and development of Rheumatoid Arthritis 
(RA) and other immune mediated disorders (Cherney et 
al. 2006; DasGupta et al. 2009; Yu Guo et al. 2010).

Coronaviruses (CoVs) included in the species of severe 
acute respiratory syndrome-related coronavirus (SARS38 
related CoV) which are considered as highly pathogenic vi-
ruses with high rate of genetic mutations and/or recombi-
nation that render these viruses are particularly dangerous 
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and able to jump the species barriers from 40 animal host 
to humans and also to spread efficiently among humans 
causing severe respiratory complications, sometimes fatal 
(Siddell et al. 2019). In those patients, as a result of severe 
inflammatory-induced lung injury attributable to an un-
controlled overproduction and release of soluble markers 
of inflammation, as cytokines and several other mediators, 
referred as cytokine storm syndrome (CSS), sustaining an 
aberrant systemic inflammatory response, triggered by ab-
normal immunologic response to SARS-CoV-2 infection 
(Batista 2020; Gorbalenya et al. 2020; Guan et al. 2020).

Additionally, obesity is well-recognized as a major risk 
factor of insulin resistance and the number of obese peo-
ple is increasing universally. The expression of tumor ne-
crosis factor (TNF)-α, is increased in obese humans and 
animals (Hotamisligil et al. 1994).

Currently, five TNF-α inhibitors which are infliximab, 
etanercept, certolizumab pegol, adalimumab and golim-
umab are approved by Food and Drug Administration 
(FDA) in the USA and in other countries for the treatment 
of various diseases such as psoriatic arthritis, ankylosing 
spondylitis, and rheumatoid arthritis (RA) (Maekawa et 
al. 2019). The mentioned drugs bind selectively to TNF-α 
and inhibit its interaction with the TNF receptor. An ap-
proach for the regulation of TNF-α levels by means of the 
inhibition of TNF-α converting enzyme (TACE). TACE is 
a membrane bound zinc metalloprotease which converts 
the 26-kDa transmembrane bound pro-TNF-a to the ma-
ture 17-kDa soluble form of TNF (Sheppeck et al. 2007a, b; 
Yu Guo et al. 2010). TNF-α biological response is mediat-
ed through two dissimilar receptors; namely TNF-R1 and 
TNF-R2. Both receptors are transmembrane glycopro-
teins similar in their extracellular domains sharing struc-
tural and functional homology, while their intracellular 
domains are distinct. TNF-R1 is constitutively expressed 
in most tissues while TNF-R2 is characteristically found in 
immune system. Experimental validation proved that un-
der physiological conditions, TNF-R1 signaling seems to 
be mainly responsible for pro-inflammatory properties of 
TNF-α, while TNF-R2 has been hypothesized that it acts 
as ligand passer, at least in some cells. (Park et al. 2006; 
Sheppeck et al. 2007c; Maekawa et al. 2019; Batista 2020).

Furthermore, TACE has been associated with hyper-
tension by the elevation of Angiotensin II levels (De Que-
iroz et al. 2020). Inflammatory cytokines are accompanied 
with increased risk of cancer disease, so the inhibition of 
inflammatory mediators will inhibit immune related can-
cer cases (Lebrec et al. 2015).

Several drugs have been generated 
based on the inhibition of TACE activity 
or TNF-α

So our interest is the discovery of new effective small mol-
ecule leads that could modulate TNF-α levels is of high 
interest. (Park et al. 2006; Govinda Rao et al. 2007; Banda-
rage et al. 2008; Zhang et al. 2009).

The majority of known TACE inhibitors include a 
hydroxamic acid as the zinc chelating group. Since hy-

droxamic acids are often poorly absorbed and are suscep-
tible to metabolic degradation and glucuronidation, the 
interest is discovering alternative groups to the hydroxam-
ic acid (Levin et al. 2006; Lombart et al. 2007; Duan et al. 
2008; Mazzola et al. 2008; Udechukwu et al. 2017).

Alternatively, non-hydroxamic acid TACE inhibitors, 
including tartrates and hydantoins. Tartaric acid and car-
boxylic acid based TACE inhibitors have been reported.
(Sheppeck et al. 2007a, b; Yu W et al. 2010; Dai et al. 2011).

As the catalytic site of TACE and matrix metallopro-
teinase (MMP) has high amino acid sequence similarity, 
the early MMP inhibitors, such as marimastat, prinomas-
tat, and CGS27023A showed TACE inhibitory activity. 
TACE inhibitors or dual TACE and MMP inhibitors with-
out MMP-1 inhibition are desirable (Janser et al. 2006; 
Adrian et al. 2007).

On our ongoing discovery program of potent TACE 
inhibitors, more exploration and understanding of the 
relationship between the structure and biological activi-
ty based on quantitative structure–activity relationship 
(QSAR) is useful tool for design of more potent inhibitors 
(Janser et al. 2006; Levin et al. 2006; Adrian et al. 2007; 
Duan et al. 2008).

Materials and methods
Molecular modeling
Molecular modeling Software and hardware

The molecular modeling software applied in the current 
research are:

• CS ChemDraw Ultra (Version 12.0), Cambridge 
Soft Corp., USA.

• Discovery Studio 2016, Accelrys Inc., San Diego, 
including pharmacophore generation, Ligandfit and 
Libdock implemented in Discovery Studio 2016

• MATLAB (Version R2007a), The MathWorks Inc., 
USA, Euclidean distance calculations

• Catalyst Search implemented in Discovery Studio 
2016, Accelrys Inc., USA.

Data set

Structures of 115 TACE inhibitors with similar in vitro 
bioactivities (Suppl. material 1: table A) were collected 
from different articles (Duan et al. 2007; Duan et al. 2008; 
Lu et al. 2008; Ott et al. 2008a, b, c). The bioactivities were 
expressed as (IC50), which represents the concentration 
of the test compound that inhibited the activity of TACE 
by 50%. For pharmacophore modeling and QSAR analy-
sis purposes, the logarithm of measured IC50 (nM) values 
were used to ensure correlating the data linear to the free 
energy change.

The chemical structures of TACE inhibitors (1–115, 
Suppl. material 1: table A) were drawn as 2D format in 
ChemDraw Ultra (Version 12.0). Rule based methods im-
plemented in Discovery Studio were used for the conver-
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sion into 3D structures followed by energy minimization 
to the closest local minimum energy by means of the mo-
lecular mechanics CHARMm force field. Subsequent sav-
ing as SD format for following docking experiments. The 
Log(IC50) (nM) values were applied in modeling analysis, 
hence linearly correlating the biological data to the free 
energy change. The obtained 3D structures were used as 
starting conformers for conformational analysis for phar-
macophore modeling.

Data sets

HYPOGEN module from the CATALYST software pack-
age was employed to construct numerous plausible bind-
ing hypotheses for TACE inhibitors. (Duan et al. 2007; 
Duan et al. 2008; Lu et al. 2008; Ott et al. 2008a, b, c). The 
conformational space of each inhibitor (1–115, Suppl. 
material 1: table A) was explored adopting the ‘‘CAESAR’’ 
option within CATALYST (Smellie and Teig 1995; Khan-
far and Taha 2013). Detailed experimental and theoretical 
explanations of pharmacophore modeling and conforma-
tional analysis are provided in the Suppl. material 1: Sec-
tion SM-1, SM2, SM-3.

An ‘‘Uncertainty’’ value of 3 was reported for the inhib-
itors biological data, which means that the actual bioactiv-
ity of a particular inhibitor is assumed to be within an in-
terval ranging from one-third to three-times the reported 
bioactivity value of that inhibitor (Sutter et al. 2000). Af-
terwards, three structurally diverse training subsets were 
carefully selected from the collection for pharmacophore 
modeling: sets A, B and C (Suppl. material 1: table B) as 
demonstrated in Scheme 1.

Pharmacophoric hypotheses generation

Three structurally diverse training subsets were selected 
from the collected 115 inhibitors (Suppl. material 1: ta-
ble B). For each subset group, eight modeling runs were 
performed to explore the pharmacophoric space of TACE 
inhibitors. The difference between the resulted hypothe-
ses were based on altering the interfeature spacing and the 
number of allowed features in the resulting pharmacoph-
ores (Suppl. material 1: table C).

Eventually, pharmacophore exploration (8 automatic 
runs, Suppl. material 1: tables C, D) culminated in 240 
pharmacophore models of variable qualities (See Suppl. 
material 1: SM-2 for details about CATALYST Pharma-
cophore Generation Algorithm)(Li and Hoffmann 2000; 
Güner et al. 2004) and the summary of the experimental 
part is summarized in Scheme 1.

Assessment and clustering of the gen-
erated pharmacophore hypotheses

Upon the generation of hypotheses, CATALYST seeks to 
reduce a cost function consisting of three terms: Weight 
cost, error cost and configuration cost (Sutter et al. 2000; 
Catalyst 4.11 User Guide 2005; Discovery Studio 2.5.5 
User Guide 2010). Clustered 46 pharmacophores, out of 

240 generated models, were found to possess Fisher con-
fidence values ≥ 90% (see section SM-3). Suppl. material 
1: tables C, D show the success criteria of representative 
pharmacophores from each run. Detailed theoretical ex-
planations of CATALYST’s assessment of binding hypoth-
eses are provided in the Suppl. material 1: SM-3.

CATALYST based method was applied for clustering 
of the successful models (240) which were clustered into 
46 groups applying the hierarchy average linkage. Among 
240 hypotheses, the closely-related pharmacophores were 
gathered in three-membered clusters. Accordingly, the 
highest-ranking representatives based on their fit-to-bio-
activity correlation r2-values (calculated against collected 
compounds 1-115), were designated to represent their 
corresponding clusters in subsequent QSAR modeling 
(Suppl. material 1: table D).

KNN-based descriptor selection

The kNN-QSAR methodology relies on a distance learn-
ing approach such that the activity value of an unknown 
member is calculated from the activity values of certain 
number (k) of nearest neighbors (kNNs) in the training 
set. The equations and the details of calculated distances 
for kNNs are explained in the Suppl. material 1: SM-4.

ROC curve analysis

Successful GFA-kNN selected pharmacophore models 
were validated by assessing their abilities to selectively 
capture diverse TACE inhibitors from a large list of de-
coys employing ROC analysis as described by Verdonk 
and co-workers.(Verdonk et al. 2004; Triballeau et al. 2005; 
Kirchmair et al. 2008). For each active compound in the 
testing set an average of 35 decoys were randomly chosen 
from the ZINC database (Irwin and Shoichet 2005). See 
Suppl. material 1: SM-5 for detailed experimental and the-
oretical explanations of ROC analysis.

Addition of exclusion volumes

To account for the steric constraints of the binding pock-
et and to optimize the ROC curves of our QSAR-selected 
pharmacophores, it was decided to add exclusion vol-
umes to the successful GFA-kNN selected pharmaco-
phore models employing the HIPHOP-REFINE module 
of CATALYST. HIPHOP-REFINE uses inactive training 
compounds to add exclusion spheres to resemble the ste-
ric constraints of the binding pocket. It identifies spaces 
occupied by the conformations of inactive compounds 
and free from active ones. These regions are then filled 
with excluded volumes (Clement and Mehl 2000). More 
details are provided in the Suppl. material 1: SM-6).

Preparation of TACE protein structure

The 3D structure of TACE was downloaded from the 
Protein Data Bank (TACE, PDB code: 2i47, resolution: 
1.9  A°). Addition of hydrogen atoms to the protein was 
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Scheme 1. The Experimental flowchart for experimental kNN-QSAR Modeling.

performed utilizing Discovery Studio 2016 templates for 
protein residues. No further energy minimization of the 
protein structure was applied before performing the dock-
ing experiments. It was very difficult to gain a selective 
TACE protein over various Matrix metalloproteinases 

(MMPs), mainly MMP-2 and MMP-13 due to high simi-
larity in these proteins and TACE structure. The selection 
of this protein structure (PDB code: 2i47) has preferences 
over other available protein crystallographic structures 
due to high resolution value, in addition to the selectivity 
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of this protein structure with a well-known binding pock-
et (Condon et al. 2007).

TACE ligands libdocking

LibDock docks the ligands into a binding site directed 
by binding hot spots. It aligns docked ligand conforma-
tions to polar and nonpolar receptor interactions sites, i.e., 
hotspots (Diller and Mertz 2001).

In the current docking experiments, certain parame-
ters were employed for docking and scoring of the total 
list (115) TACE inhibitor as mentioned under Suppl. ma-
terial 1: SM-7.

Ligandfit docking

Ligandfit docking engine considers receptor as rigid 
structure and treat the ligands as flexible compounds 
(Venkatachalam et al. 2003). Steps of Ligandfit and the 
corresponding protocol settings are mentioned under 
Suppl. material 1: SM-8. It aligns docked ligand con-
formations to polar and nonpolar receptor interactions 
sites, i.e., hotspots. The binding site is determined from 
the co-crystalline ligand (KGY, PDB Code: 2i47). Scor-
ing of the high ranking docked conformers/poses was 
performed using 7 scoring functions, namely: Jain, Lig-
Score1, LigScore2, PLP1, PLP2, PMF and PMF04 (Ven-
katachalam et al. 2003).

In the current docking experiments, certain parame-
ters were employed for docking and scoring of the total 
list (115) TACE inhibitor as mentioned under Suppl. ma-
terial 1: SM-8.

In‑silico screening of NCI database

The sterically-refined version of Hypo(A-T6-4) selected 
in the optimal kNN model was employed as 3D search 
query to screen the National Cancer Institute list of 
compounds (includes 265,242 structures). Screening 
was performed employing the “Best Flexible Database” 
search option implemented within Discovery Studio 
2016. NCI hits were subsequently filtered based on Lip-
inski’s rule such that only hits of H-bond donors less < 
5, .molecular weights < 500 dalton, H-bond acceptors 
less < 10, H-bond acceptors < 5, and logP < 5 were re-
tained(Lipinski et al. 2001; Veber et al. 2002). Filtered 
hits were fitted against Hypo(A-T6-4) by the “Best 
Fit” option in Discovery Studio 2016 and their fit val-
ues together with other relevant molecular descriptors 
were used to predict the activity of these selected hits. 
High-ranking hits were ordered from National Cancer 
Institute (NCI) for subsequent in vitro assay (see Suppl. 
material 1: table E).

In vitro TACE inhibition bioassay

The assay kit was purchased from Abcam’s TACE inhibitor 
screening Kit, TACE hydrolyzes the specific FRET sub-

strate to release the quenched fluorescent group, which 
can be detected fluorometrically at Ex/Em = 318/449 nm. 
In the presence of the tested TACE inhibitor, the hydroly-
zation of substrate will be impeded.

The assay protocol is described as follows: an aliquot 
of (50 μL) of diluted TACE enzyme solution was mixed 
with (25 μL) of a testing diluted compound, the positive 
control, enzyme control (without inhibitor) or the buffer 
solution in the case of negative control. Mix well, and in-
cubate for 5 minutes at 37 °C. Next, add (25 μl) of diluted 
substrate solution into each well and mix well. Then the 
mixture was incubated at 37 °C for 30 minutes protect-
ed from light. The fluorescence intensity (Excitation : 318 
nm; Emission : 449 nm) was read in FLX800TBI Micro-
plate Fluorimeter (BioTek Instruments, Winooski, VT, 
USA). The selected hits were dissolved in DMSO yield-
ing 10 mM stock solutions followed by dilution to the 
required concentration using distilled deionized water. 
DMSO concentration was adjusted to 0.1%. The percent-
age of remaining TACE activity was identified in the pres-
ence and absence of the tested molecules. TACE activity is 
not affected by DMSO. The negative control samples were 
used as a contrast background. The carried experimental 
protocol and measurements were in duplicates. The % in-
hibition of TACE by the selected hits was calculated using 
the following equation (1)

% Inhibition
[�RFU of EC �RFU of S]

�RFU of EC
*100% (1)

Where, ∆RFU of EC: The difference in fluorescence gen-
erated by hydrolyzation of substrate for enzyme control, 
ΔRFU of S: The difference in fluorescence generated by 
hydrolyzation of substrate in presence of tested hit. The 
measurements were carried out in duplicates.

Results and discussion
QSAR modeling

After the generation of high quality 240 pharmacophores 
from 8 various runs for each subset (Suppl. material 1: 
table C). Clustering of the obtained pharmacophores re-
sulted in 46 pharmacophore used in subsequent QSAR 
modeling (Suppl. material 1: table D). Best representative 
pharmacophore yielded high quality models of compa-
rable success criteria (Suppl. material 1: table D). Thus, 
selecting particular binding hypothesis(es) to explain bio-
activity variations across TACE inhibitors is a challeng-
ing process. Traditional GFA-MLR methods for normal 
QSAR equation generation were not efficient to have a 
correlation between essential pharmacophore, 2D de-
scriptors as independent variables and biological activity 
as dependent variable. The fit values of these hypothesis 
against collected inhibitors (1-115) were enrolled togeth-
er with a selection of 2D descriptors as independent vari-
ables in GFA/kNN-based QSAR analysis. QSAR based on 
kNN regression was applied as a competition platform to 



Habash M et al.: Discovery of Potential TACE Inhibitors252

extract the best possible combination of pharmacophores 
and other molecular descriptors collectively capable of 
explaining bioactivity variations across collected TACE 
inhibitors (Khanfar and Taha 2013). kNN is defined as a 
non-linear nonparametric method that predicts a ligand’s 
bioactivity as the weighted-average of the bioactivities 
of its k nearest neighbors. The neighborhood is defined 
based on certain selected descriptor(s). The measurement 
of nearness is based on an appropriate distance metric.
(Sharaf and Kowalski 1986; Zheng and Tropsha 2000; 
Khanfar and Taha 2013).

kNN-based QSAR modeling

We employed kNN-based QSAR modeling for TACE 
target. The kNN-QSAR methodology is based on a dis-
tance-based learning approach, which calculates the ac-
tivity value of an unknown member is based on the ac-
tivity values of certain number (k) of nearest neighbors 
(kNNs) in the training set. The distance metric similarity 
is measured by Euclidean distance. We applied the fol-
lowing kNN workflow: (1) Compute Euclidean distanc-
es between an unknown object (x) and all the objects in 
the training set with respect to certain descriptor(s); (2) 
choose from the training set k objects which are most 
similar to object x; (3) compute the distance-weighted 
average bioactivities of k objects as predicted bioactivi-
ty of x. (4) Correlate between the predicted bioactivities 
with the experimental ones to define the optimal k value 
and illustrative descriptors via leave-20% out cross-val-
idation (Sharaf and Kowalski 1986; Zheng and Tropsha 
2000). Table 3 shows the selected descriptors, nearest 
neighbors and statistical criteria of the top 5 kNN-based 
QSAR models. We selected model number 1 (Table 3) as 
the best representative for subsequent virtual screening 
and QSAR-based predictions because it exhibits excel-
lent overall explanatory power with the least number of 
descriptors and nearest neighbors(Sharaf and Kowalski 
1986; Zheng and Tropsha 2000).

kNN-QSAR model (1) selected four descriptors encod-
ing for dipole Z that ensures the importance of polarity 
and the formation of hydrogen bonding with TACE bid-
ing site. The second descriptor is ES_Count_sssCH which 
indicates the number of methantriyl groups. Obviously, 
the presence of the ES_Count_sssCH descriptor in Model 
1 indicates the participation of bulky substituents of quin-
oline and other heterocyclic compounds in steric inter-
actions aromatic and olefinic carbon atoms (ES_Count_
sssCH). The topology, the connectivity and the bulkiness 
of the structure represented by(CHI_V_3_P), in addition 
to Jurs_SASA is calculated by mapping atomic partial 
charges on total solvent accessible surface areas of indi-
vidual atoms. This descriptor has positively influenced the 
binding affinity of the inhibitors (Buglak et al. 2019).

Additionally, the appearance of dipole Z descriptor in 
model (1) which indicates The components of the dipole 
moment along z-axis, in addition to 3χP is path connectiv-
ity index. Moreover, it selected one pharmacophores as ad-

ditional explanatory descriptors, namely, Hypo(A-T6-4). 
Interestingly, many of the descriptors in kNN-QSAR 
model (1), repeatedly emerged in other best performing 
kNN-QSAR models (Table 3), including the pharmacoph-
ore model which add further weight to these descriptors.

Repeated appearance of Hypo(A-T6-4) among the op-
timal kNN-QSAR models indicates the essential pharma-
cophoric features.

The repeated appearance of dipole Z and ES count de-
scriptor in top ranking kNN-QSAR models, including 
model 1 (Table 3), is suggestive of significant role played 
by aromatic or aliphatic nitrogen atoms in ligand binding 
within TACE probably through hydrogen bond attractive 
forces or trough ionic attractive forces to acidic amino 
acid moieties in the binding pocket. Similarly, aliphatic 
and aromatic carbon atoms count descriptors probably 
encode for affinity interactions connecting different train-
ing ligands and hydrophobic moieties within TACE bind-
ing pocket. TACE binding site contains several hydropho-
bic and aromatic moieties capable of π-π-stacking and 
hydrophobic interactions with various ligands including, 
Pro437, Lys315, Leu350, Leu318 and Tyr352 (Fig. 1).

Addition of exclusion volumes and ROC 
curve analysis

Fig. 2 shows Hypo(A-T6-4) and how it maps co-crystal-
lized ligand within the closely-homologous protein (PDB 
Code: 2i47), while Table 1 shows the X, Y, and Z coordi-
nates of Hypo(A-T6-4).

To further validate our kNN-QSAR-selected pharma-
cophores, we subjected them to ROC curve analysis to 
assess their abilities to selectively capture diverse TACE 
inhibitors from a large list of decoys as clearly mentioned 
in Suppl. material 1: SM-5. The ROC performance was ac-
cepted for the selected pharmacophore with ROC-AUC 
value of approximately 0.8 as shown in Table 2. Conse-
quently, for the improvement of the ROC-AUC curve 
parameter, addition of exclusion spheres was performed 
using HipHop refining list that is selected in Table 4 and 
according to the procedure mentioned under Suppl. mate-

Table 1. TACE based pharmacophore model selected by kNN-
QSAR modeling.

Model Definitions Chemical features
Hypo 

A-T6-4
HBD HBD R.A Hbic

Weights 2.24 2.24 2.24 2.24
Tolerances 1.6 2.2 1.6 2.2 1.6 1.6 1.6
Coordinates X 1.78 3.91 3.17 5.28 2.24 0.39 -0.83

Y -1.34 -3.37 1.93 -0.19 1.06 -1.07 -3.55
Z -0.13 0.48 3.51 3.94 7.35 6.31 9.03

Number of Associated Exclusion Spheres (A-T6-4) at the following X, 
Y, Z coordinates: 
Excluded volume (0.51, -2.40, 3.40) Tol: 120.00;
Excluded volume (-0.04, 1.06, 2.40) Tol: 120.00;
Excluded volume (4.97, 5.27, 4.26) Tol: 120.00.
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Figure 1. Hypo(A-T6-4). A. Pharmacophoric features of the binding model: HBD as violet vectored spheres, Ring 
aromatic as orange spheres, Hbic as blue spheres and Exclusion volumes as gray spheres); B. Hypo(A-T6-4) mapped 
against potent  TACE inhibitor 90 (Suppl. material 1: table A); C. Refined Hypo(A-T6-4); D. Refined Hypo(A-T6-4) 
mapped against potent TACE inhibitor 90, IC50n =0.14nM (Suppl. material 1: table A); E. Chemical structure of TACE 
inhibitor 90; F. Libdock docked pose of inhibitor 90 within binding site of TACE binding site(PDB code: 2i47).
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Table 2. ROCa performances of KNN-selected pharmacoph-
ores and their sterically refined versions as 3D search queries.

Pharmacophore model ROCa–AUCb ACCc SPCd TPRe FNRf

Hypo A-T6-4 0.798 0.972 0.99 0.25 0.007
Hypo A-T6-4 Refined 0.929 0.972 0.99 0.25 0.007

aROC: Receiver operating characteristic; bAUC: Area under the curve; 
cACC: Overall accuracy; dSPC: Overall specificity; eTPR: Overall true 
positive rate; fFNR: Overall false negative rate.

rial 1: SM-6. Ten exclusion spheres were added and the ob-
tained Refined Hypo (A-T6-4) ROC-AUC was increased 
to 0.929 as obviously illustrated in Table 2 and Suppl. ma-

terial 1: fig. A, SM-6, which represents the shapes of ROC 
curves for the unrefined and refined Hypo (A-T6-4). De-
spite low values of TPR = 0.25, selectivity (SCC = 0.99) 
is high which increases the hits inhibition against TACE 
over MMPs . Also low false negative rate (FNR = 0.007) 
decreases the loss of potential active hits.

Ligandfit and libdock

Additionally, Ligandfit and Libdock docking experiments 
performed for the most active hits are shown obvious-
ly in Figs 4, 5. The binding site of TACE protein (PDB 
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Figure 2. A. Hypo(A-T6-4) mapped against co-crystalline ligand (KGY, PDB code: 2I47) Pharmacophoric features of the bind-
ing model: HBD as violet vectored spheres, Ring aromatic as orange spheres, Hbic as blue spheres and Exclusion volumes as gray 
spheres); B. Refined Hypo(A-T6-4) mapped against co-crystalline ligand (KGY, PDB code: 2i47); C. Chemical structure of co-crys-
talline ligand (KGY, PDB code: 2i47).

code: 2I47) simulates the pharmacophoric features of Hy-
po(A-T6-4) as hydrogen bonding was formed with var-
ious amino acids according to the binding mode of the 
NCI hit such as Glu 406 and H2O 927 as in the case of hit 
118 (Fig. 4B), hydrophobic attractive forces with His 405, 
Lys 315, Gly 346 as presented with several hits (Fig. 4A, 
E, F). Also aromatic π-π stacking is shown with aromatic 
amino acid residues as shown with His 405, His 409 and 
His 415 with hit 140 (Fig. 4G).

According to the settings of Libdock (Suppl. material 
1: SM-7), the docked active NCI hits poses are present-
ed in Fig. 5, for example hit 128 forms hydrogen bonding 
with amino acid residues His 415 and Asp 418, hydropho-
bic forces are formed with Glu319, Leu 318and Leu 350 
(Fig. 5C). Additionally, the most potent hit 131 has more 
obvious attractive forces with TACE binding site (Fig. 5E), 
that hydrogen bonding is clear with H2O 923, H2O 990 
and Ala 351, aromatic π-π stacking is presented with Tyr 
351 and His 415 which simulates the aromatic ring phar-
macophoric feature of Hypo(A-T6-4). Finally, hydropho-
bic attractive forces with Leu350, Lys315 and Leu318.

Furthermore, to ensure the correct selection of dock-
ing settings performed above, the co-crystalline ligand 
KGY (PDB: 2i47) was re-docked again within TACE 
binding site and according to the previous scoring func-
tions. Clearly from the figure, the applied docking settings 
closely reproduced the bound structure with RMSD value 
of 1.14 A° which support the confidence in our docking 
experiment.

NCI search query and in vitro biossay

The filtered hits activity was predicted according to se-
lected kNN model, 28 out of the best predicted NCI com-
pounds were tested as TACE inhibitors using the bioassay 
kit as mentioned in the experimental part. The inhibitory 
activity of the selected NCI hits was performed at 100 µM 
concentration and the obtained results were tabulated 
with the corresponding structure for each hit as shown in 
Suppl. material 1: table E.

Mapping of the most potent hits against Hypo(A-T6-4) 
are presented in Fig. 3 which shows that 8 active hits with 
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Figure 3. A. Hypo(A-T6-4) mapped against 117a(51%b); B. Hypo(A-T6-4) mapped against 118a(81%b); C. Hypo(A-T6-4) mapped 
against 125a(51.9%b); D. Hypo(A-T6-4) mapped against 128a(53.3%b); E. Hypo(A-T6-4) mapped against 130a(51.2%b); F. Hy-
po(A-T6-4) mapped against 131a(81.4%b); G. Hypo(A-T6-4) mapped against 140a(52.2%b); H. Hypo(A-T6-4) mapped against 
143a(54.7%b); a: The number of the active NCI hit (Suppl. material 1: table E); b: The inhibition percent of the active NCI hit at 100 µM 
concentration (Suppl. material 1: table E).
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E

H

C

F

TACE inhibition activity exceeding 50% at 100 µM con-
centration. Obviously, the active hits mapped with Hy-
po(A-T6-4) without any missing features which explains 
the activity of the captured hits.

As explained before, the active hits mapped with the 
selected pharamacophore in our successful model (Hy-
po(A-T6-4) as obviously illustrated in Fig. 3. The dif-

ferences in the obtained activity of the NCI hits can be 
explained by the variations in the docking poses of these 
hits and the types of the forces formed with amino acid 
residues as presented in Figs 4, 5. The better the matching 
between the docking hit forces with the pharmacophoric 
feature of Hypo(A-T6-4), the higher the activity of our 
captured hit as mentioned for hit 118 and 131
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Figure 4. Ligandfit docked poses of the most potent hits A. 117a(51%b); B. 118a(81%b); C. 125a(51.9%b); D. 128a(53.3%b); 
E. 130a(51.2%b); F. 131a(81.4%b); G. 140a(52.2%b); H. 143a(54.7%b); a: The number of the active NCI hit (Suppl. material 1: table E); 
b: The inhibition percent of the active NCI hit at 100 µM concentration (Suppl. material 1: table E).
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Figure 5. Libdock docked poses of the most potent hits A. 117a(51%b); B. 118a(81%b); C. 128a(53.3%b); D. 130a(51.2%b); 
E. 131a(81.4%b); F. 140a(52.2%b); G. 143a(54.7%b); a: The number of the active NCI hit (Suppl. material 1: table E); b: The inhibition 
percent of the active NCI hit at 100 µM concentration (Suppl. material 1: table E).
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A B

Figure 6. A. Structure of co-crystalline compound KGY against B. Comparison between the docked pose of KGY (red) as produced 
by docking simulation and the crystallographic structure of this inhibitor within TACE (green, PDB code: 2i47).

Table 4. The training compounds used for adding excluded 
spheres for Hypo(A-T6-4) using HIPHOP-REFINE module of 
CATALYST.

Compda IC50 (nM) Principal value MaxOmitFeatb

1 1,030 0 2
2 1,300 0 2
3 2,200 0 2
4 49,000 0 1
5 100,000 0 2
6 11,000 0 2
7 800 0 1
9 100,000 0 1
10 100,000 0 1
11 32,000 0 1
12 2,360 0 2
44 1 2 0
46 1 2 0
56 1 2 0
58 1 2 0
63 1 2 0
71 1 2 0
76 1 2 0
86 0.4 2 0
87 1.1 2 0
88 0.94 2 0
90 0.14 2 0
96 1 2 0
97 1 2 0
101 1 2 0
103 1 2 0
110 1 2 0
115 1 2 0

aCompoundsʼ numbers are as in Suppl. material 1: fig. A, table A; bMax-
OmitFeat: maximum omitted features.

Table 3. Optimal kNN-QSAR models including their corre-
sponding descriptors, nearest neighbors, and statistical criteria.

Model Selected 
descriptors

Number 
of nearest 
neighbors

Statistical criteria
r2a r2LOOb r2L20%Outc

1

Hypo(A-T6-4)d

4 0.952096 0.857226 0.843372083
CHI_V_3_P
Dipole_Z
ES_Count_sssCH
Jurs_SASA

2

Hypo(A-T6-4)

4 0.941066 0.863068 0.846875968
Hypo(DIV-T4-10)d

CIC
LogD

3

Hypo(A-T6-4)

4 0.957687 0.875218 0.864507451

Hypo(A-T2-9)d

Hypo(B-T2-8)d

Dipole_Z
ES_Count_dO
LogD

4

Hypo(A-T6-4)

3 0.962255 0.87031 0.855564671

Hypo(A-T2-9)
ES_Count_sOH
ES_Sum_ssCH2
Shadow_XYfrac
LogD

5

Hypo(A-T6-4)

3 0.930032 0.860158 0.85490382

Hypo(A-T5-1)d

Hypo(A-T7-4)d

Hypo(DIV-T8-3)
BIC
SIC

Conclusion
TNF-α converting enzyme is considered as a main 
cause of various serious diseases, so the discovery of 
new TACE inhibitors is remarkable step especially with 
drawbacks of the marketed known inhibitors. Ordinary 
QSAR modeling process was not efficient in the cre-
ation of normal QSAR equation comprising the most 
significant pharmacophores and 2D descriptors which 
manipulates the inhibitory activity of TACE inhibitors. 
Another approach via kNN-QSAR modeling procedure 

was a successful alternate for obtaining a validated mod-
els which clearly selected the essential pharmacophoric 
features needed for TACE inhibitors among 240 gen-
erated pharmacophores using three various subsets, in 
addition to properly picking out of crucial 2D descrip-
tors in the model. ROC validated confirms the success of 
the selected phamacophore upon its validation and the 
subsequent active Refined Hypo(A-T6-4) was applied 
as search query on NCI compound. Selected NCI com-
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pounds inhibitory activity was examined and achieved 
TACE inhibitory activity exceeding 80% at 100 μM con-
centration for some NCI hits.

Abbreviations used

GFA, genetic function algorithm; Hbic, hydrophobic; 
kNN, k nearest neighbor; TACE, TNF-α converting en-
zyme; NCI, national Cancer Institute; RingArom, ring 
aromatic; ROC, receiver operating characteristic; AUC: 
area under the curve; ACC: overall accuracy; SPC: overall 

specificity; TPR: overall true positive rate; fFNR: overall 
false negative rate; MMPs: Matrix metalloproteinases
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