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Abstract
Aryl hydrocarbon receptors (AhR) are regulators of the expression of cytochrome P-450 isoforms, mediating a wide variety of the 
effects of substances from the endogenous or exogenous origin, including those produced from the microbiome. An exciting new 
aspect of their activity is their localization in the brain and their potential to modulate the action of the immune system. AhR is 
emerging as an essential toxicological and therapeutic target for neuromodulation. Further studies are needed for elucidating their 
utility as drug-targets.
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Introduction

Aryl hydrocarbon receptors (AhR) are ligand-activated 
receptors. They form nuclear heterodimer complexes with 
AhR-dependent nuclear translocator protein, and this 
complex binds to cis-xenobiotic responsive elements in 
the promoter region of AhR-responsive genes (Denison 
et al. 2011). These receptors were initially identified as 
having a high binding affinity for 2,3,7,8-tetrachlorodi-
benzo-p-dioxin (TCDD, dioxin), which is a highly toxic 
industrial toxin (Poland et al. 1976). Subsequent studies in 
the 1980s identified various substances used in the indus-
try (Denison et al. 1998) and pharmacology as ligands of 
these receptors, such as: carbidopa (Safe 2017), omepra-
zole (Jin 2015), endogenous substances indole derivatives 
(Hubbard 2015), constituents of certain fruits and vege-
tables (Hooper et al. 2011) and microbiome metabolism 
products (Korecka et al. 2016) that have a protective effect 
on the gastrointestinal tract.

Many of those ligands have a much lower binding af-
finity for AhR than TCDD and structure-like toxic halo-
genated aromatic substances (Murray and Perdew 2017). 
Among the many xenobiotic ligands for AhR, polycyclic 
aromatic hydrocarbons have been the most widely stud-
ied (Mulero-Navaro and Fernandez-Salguero 2016). Many 
of the AhR ligands are also estrogen receptor ligands 
(Abdelrahim et al. 2006). AhR regulates the expression of 
CYP. Conjugating enzymes not only in the liver but also 
in the brain. Studies have demonstrated the induction of 
CYP1A1 by TCDD in rat brain astrocytes (Sakakibara et 
al. 2016), suggesting the involvement of AhR in the metab-
olism of xenobiotics.

After being identified as mediators of the cellular re-
sponse to xenobiotics, epidemiological studies in humans 
were conducted. The attention was focused on the patho-
logical conditions of the immune system, lipid metabo-
lism, epithelial integrity, porphyria manifestations, thy-
mus involution, and neoplasms. The involvement of AhR 
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Table 1. Examples of Ah ligands.

Chemical structure and name Source References Chemical structure and name Source References
microbial Hubbard (2015) endogenous Novikov et al. (2016)

Indole Kynurenine
microbial Hubbard (2015) endogenous Novikov et al. (2016)

Skatole Kynurenic acid
microbial Hubbard (2015) endogenous Novikov et al. (2016)

3-hydroxy indole Xanthurenic acid
microbial 

endogenous
Zelante et al. (2013) endogenous Lowe et al. (2014)

Indole-3-acetaldehyde Cinnabarinic acid
microbial 

endogenous
Jin et al. (2014) endogenous Wincent et al. (2009)

Indole-3-acetic acid FICZ
microbial Sugihara et al. (2004) endogenous Shertzer and Senft 

(2000)

Indigo Indolo(3,2-b) carbazole
microbial Flaveny et al. (2009) dietary Jin et al. (2014)

indirubin Tryptophan
microbial Murray and Perdew 

(2017)
dietary Jin et al. (2014)

Truptanthrin Flavonoids
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inspired scientific researches (Flesch-Janys et al. 1995). 
The creation of transgenic mouse models subsequently 
helps to establish the role of AhR in critical physiologi-
cal and homeostatic processes. AhR-deficient mice show 
abnormalities in the liver, hematopoietic, cardiovascular, 
and immune system development (Lahvis et al. 2000). 
The physiological significance of AhR is further support-
ed by the fact that they are evolutionarily conserved and 
exist in all multicellular animals. In some lower-order in-
vertebrates, e.g., D. melanogaster, AhR does not have a de-
toxifying function but is required for the development of 
eyes, feet, and wings (Cespedes et al. 2010). In C. elegans, 
AhR is essential for neuronal differentiation and migration 
(Quin and Powell-Coffman 2004). According to modern 
understanding, the xenobiotic-dependent functions of 
AhR represent an adaptive mechanism that overlaps its 
physiologically determined features (Mulero-Navarro and 
Fernandez-Salguero 2016). Epigenetic mechanisms are in-
volved both in the expression of AhR (Mulero-Navarro et 
al. 2006) and in regard of genes that are regulated by AhR. 
Exposure of the maternal organism to the action of AhR 
agonists is considered to be one of the possible mecha-
nisms for the development of breast cancer in the offspring 
through epigenetic mechanisms (Romagnolo et al. 2016).

AhR as a therapeutic target

The identification of AhR ligands and their well-descri-
bed positive health effect and beneficial pharmaceutical 
properties has stimulated studies aimed at developing 
drugs for various tumors, immune and inflammatory di-
seases, and enhancers of hematopoietic stem cell producti-
on. In the development of drugs that target AhR, the aim is 
mainly directed to selective AhR modulators, in which the 
ligand exhibits tissue-specific agonist or antagonist activity 
(Jin et al. 2012). Different classes of AhR ligands and dif-
ferent molecular types in the same class can differentially 
modulate AhR activity, inducing the expression of various 
genes. For this reason, AhRs can be considered as poten-
tially interesting drug targets with cell-specific regulation.

Since AhRs are widely expressed in a number of tumors, 
molecules with antagonistic activity against AhRs could 
be considered as potential candidates for the treatment 
of such diseases. The most well-known AhR antagonist 
is alpha-naphtoflavone (Gasievicz and Rucci 1991). The 
potent AhR antagonist StemRegenin 1 has recently been 
developed as an inducer of human hematopoietic stem 
cell proliferation in vitro (Boitano et al. 2010). Interesting 
effects of bilirubin, as a potential AhR ligand on the immune 
system, have been reported (Bock and Kohle 2010) – in 
bilirubin-treated mice, it suppresses the development of 
the autoimmune disease. After endogenous bilirubin 
depletion, there is an increased incidence of exacerbation 
of autoimmune disease (Liu et al. 2008).

Throughout the many plant nutrients and chemicals of 
plant origin in the human diet, flavonoids are the most 
abundant and ubiquitous in fruits, vegetables, and wine. 

Quercetin, apigenin, and campherol, which are included 
in some foods, such as rose hips, linden flowers, honey, 
grapes, have been shown to exert agonist / antagonistic 
effects on AhR in various tissues (Hooper 2011). In ad-
dition, many flavonoids have anti-allergic and anti-in-
flammatory effects. Resveratrol (Papoutsis et al. 2010) has 
been found to inhibit CYP1A1 transcription in vitro, pre-
venting AhR activation. Indole-glucosindolates in cruci-
ferous vegetables is metabolized to compounds with high 
affinity for AhR. One of these metabolites, indole-3-car-
binol, has been successfully tested in clinical trials as a 
dietary supplement (Reed et al. 2005). Probiotic bacteria 
and yeasts related to the human gut and skin microbio-
me also produce AhR ligands (e.g., indole-3 aldehyde, 
indirubin), thus enhancing the body’s barrier functions 
(Zelante et al. 2013).

Neuroprotective properties of 
AhR modulators

AhR expression in vertebrate brain has recently been 
demonstrated by immunohistochemistry, with the brain 
stem, pineal gland, and some hypothalamic nuclei (in-
cluding the suprachiasmatic nucleus controlling the 
circadian rhythm) having significantly elevated AhR le-
vels compared to other areas of the brain (Juricek and 
Coumoul 2018). AhR regulates neurogenesis, cell proli-
feration, differentiation, and migration (Imran et al. 
2015). The neuroprotective potential of 3,3’-diindolyl-
methane, a selective AhR modulator, has recently been 
demonstrated in cellular and animal models of Parkin-
son’s disease, in lipopolysaccharide-induced inflamma-
tion and neuronal hypoxia (Rzemieniec et al. 2016). 
Activation of apoptotic signals by AhR ligands, on the 
other hand, can lead to NMDA (N-Methyl-d-Aspartate) 
receptor-mediated excitotoxicity, increased levels of cal-
cium in the cytoplasm and oxidative stress (Wan et al. 
2015). Interestingly, NMDA receptors also modulate the 
AhR function (Lin et al. 2008). In mouse stroke models, 
the kynurenine-aryl hydrocarbon receptor pathway is 
an essential mediator of brain neuronal damage (Cuar-
tero et al. 2014) and represents a potential therapeutic 
modulation opportunity.

Conclusion

All these data put the importance of AhR as a toxicologi-
cal and pharmacological target. Further evaluation of the 
neuropharmacological potential of substances that bind 
and modulate AhR is needed.
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