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Abstract
Aim: Evaluation of the anti-aging properties of Empagliflozin (EMP) associated with the aging process in mice.

Methods: The mice were allocated into four groups: negative control received normal saline without receiving D-galactose (DGA); 
all the three other groups received DGA (200 mg/kg/day orally) for eight weeks; the second group received normal saline; the third 
group received vitamin C, the final group received EMP and continued for another eight weeks.

Results: Treatment with EMP reduced the levels of TNF-α, IL-1β, and MDA levels significantly compared to induction group 
(91.7±9.6 ng/ml, 30.6±5.5 pg/ml, and 66.7±8.3 ng/ml vs. 304.0±102.9 ng/ml, 70.2±6.8 pg/ml, and 204.7±56.9 ng/ml; respectively), while 
levels of GSH-Px were significantly increased (3.3±0.6 ng/ml vs. 0.3±0.2 ng/ml). In addition, EMP increases the level of both COL-1 
and COL-3 compared to the induction group (1,783.6±186.9, and 1,583.6±186.9, vs. 885.7±242.5, and 685.7±242.5 pg/ml; respectively).

Conclusion: EMP positively affects several aging parameters in mice.
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Introduction

Aging is a biological process that is inherited and manifests 
as changes in the makeup and function of cell and extra-
cellular constituents. These changes are further influenced 
by numerous injuries an individual may suffer throughout 
their lifetime; their cumulative effects ultimately lead to 
the gradual disruption of the organism’s regulatory mech-
anisms responsible for maintaining homeostasis (Xing et 
al. 2023). It is imperative to comprehend that the aging 
process should not be classified as an illness, as the pro-
gression of aging is comprehensive and intricate. At the 
same time, diseases typically exhibit more confined man-

ifestations (Bulterijs et al. 2015). Several common charac-
teristics of aging in mammals have been observed. These 
factors encompass heightened death rates upon reaching 
adulthood and modifications in the biochemical makeup 
of tissues, such as significant reductions in lean body mass 
and overall bone mass in humans and elevations in lipo-
fuscin (often referred to as age pigment).

Furthermore, it is seen that there is a gradual decrease 
in physiological functioning as individuals grow older. 
As individuals age, there are notable declines in glomer-
ular filtration rate, maximal heart rate, and vital capacity, 
along with a diminished capability to respond effectively 
to environmental stimuli; an increased inclination and 
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vulnerability to sickness (St-Onge and Gallagher 2010; 
Guo et al. 2022; Hernández-Álvarez et al. 2023).

The aging process is influenced by various factors, with 
the primary factor being the progressive accumulation 
of random molecular damage that remains unrepaired 
throughout time; this ultimately results in cellular abnor-
malities, leading to impaired tissue function and the aging 
process (Maynard et al. 2015; Gladyshev et al. 2021). These 
mechanisms include Genomic Instability (Tiwari and Wil-
son 2019), Telomere Attrition (Shay 2016), Epigenetic al-
terations (Kane and Sinclair 2019), and Loss of proteostasis 
(Koga et al. 2011). These mechanisms operate collaborative-
ly within a multi-layered framework, ultimately leading to 
the progression of the aging process (Mc Auley et al. 2017).

The existing hypotheses regarding the aging process in 
humans span a range of biological and molecular views. 
Within this context, two notable hypotheses, namely the 
Inflammatory-Aging theory and the Oxidative Stress or 
Free Radical theory, have garnered significant attention. 
The Inflammatory-Aging hypothesis suggests a direct as-
sociation between age and the activation of macrophages, 
sometimes referred to as MACROPH-AGING. On the 
other hand, the Oxidative Stress or Free Radical theory 
was offered by Harman. The latter hypothesis posits that 
reactive oxygen species (ROS) are produced as an inevita-
ble result of metabolic processes (Jin 2010; Zuo et al. 2019).

The physiological aging process significantly impacts 
the many biological organ systems inside the human body 
(Khan et al. 2017). The impact of aging on the skin has 
been a prominent topic of discussion across various dis-
ciplines for an extended period (Bonté et al. 2019). The 
dermal collagen content experiences an annual reduction 
of 1% during adulthood. Moreover, collagen transforms as 
skin ages, transitioning from structured and thin reticulat-
ed fibers in youthful skin to fragmented and disorganized 
fibers in older skin. An elevation in the levels of metallo-
proteinases and collagen-degrading enzymes accompanies 
this process. Additionally, the interconnections between 
collagen and elastin fibers, which facilitate the skin’s ability 
to regain its shape after deformation, diminish over time. 
Consequently, these alterations ultimately form wrinkles 
in adult skin (Quan et al. 2010; Pittayapruek et al. 2016).

Empagliflozin is a novel anti-hyperglycemic drug that 
acts as a competitive, reversible, and highly specific inhibitor 
of the Sodium-glucose cotransporter-2 (SGLT2). It belongs 
to a relatively recent class of medications used for managing 
type 2 diabetes; the inhibition of SGLT2 by empagliflozin 
reduces the reabsorption of glucose into the bloodstream; 
this subsequently enhances glucose filtration via the kid-
neys, leading to its excretion in the urine and ultimately re-
ducing glucose levels. Importantly, this effect is independent 
of insulin action (Grempler et al. 2012; Neumiller 2014).

Empagliflozin (EMP) has been acknowledged as a pow-
erful antioxidant drug that protects tissues by acting as 
free radical scavengers, thereby mitigating oxidative dam-
age (Tsai et al. 2021). EMP has an anti-inflammatory effect 
due to its anti-inflammatory properties, which decrease 
the synthesis of PGE2 and proinflammatory cytokines. 

This effect is achieved by inhibiting COX-2, iNOS, cyto-
kine, and chemokine mRNA expression in RAW 264.7 
macrophages (Lee et al. 2021). The objective of this study 
is to evaluate the impact of EMP in mitigating the effects 
of aging on multiple variables in mice.

Method
Study design

A sample of Swiss albino male mice, with an average weight 
range of 25–35 g and an age range of 4–8 months, was ran-
domly allocated into four groups. Each group consisted of 
six animals, resulting in 24 mice. The mice used in this study 
were sourced from the National Drug Control Laboratory in 
Baghdad, Iraq. They were kept in a polypropylene cage in a 
controlled setting with an ambient temperature of 21±4 °C. 
The lighting conditions were set to a regular 12 h light/12 h 
dark cycle. Before the commencement of the study, the mice 
had been habituated for two weeks at the Animal Facility 
of the Al-Mustafa University College in Baghdad, Iraq. The 
animals were provided with a regular pellet meal and un-
restricted access to water, which was given by the Animal 
Facility at Al-Mustafa University College. The study was 
prepared following the ARRIVE guidelines 2.0.

The mice were allocated into four groups: negative con-
trol received normal saline without receiving D-galactose 
(DGA) (G1), all the three other groups received DGA 
(200 mg/kg/day orally) for eight weeks (this is the induc-
tion phase) (Chogtu et al. 2018; Martinovic et al. 2023); 
the second group after the induction phase; received oral-
ly normal saline for eight weeks; named induction group 
(G2), the third group after the induction phase; starting 
next day received 100 mg/kg/day vitamin C and contin-
ued for another eight weeks (G3) (Li et al. 2019), the final 
group after the induction phase; starting next day received 
1 mg/kg/day EMP and continued for another eight weeks 
(G4) (Han et al. 2017), all oral drugs administer utilizing 
gastric gavage, as illustrated in Table 1 and Fig. 1.

A successful induction is characterized by ragged fur 
and a more overall plump physical look. Additionally, old-
er mice may exhibit reduced alertness, decreased activity 
levels, wrinkly skin, and diminished responsiveness or in-
creased hesitancy in their movements compared to their 
younger counterparts (Toth 2018).

Table 1. Animal allocation for each group.

D-galactosea Drug received 
(eight weeks)

Duration 

G1 Did not 
receive

normal saline by 
gastric gavage

16 weeks

G2 (Chogtu et al. 2018; 
Martinovic et al. 2023)

Received normal saline by 
gastric gavage

16 weeks

G3 (Li et al. 2019) Received Vitamin C (100 mg/kg/day) 
by gastric gavage

16 weeks

G4 (Han et al. 2017) Received EMP (1 mg/kg/day) by 
gastric gavage

16 weeks

a dosage of 200 mg/kg/day of DGA orally by gastric gavage for eight weeks.
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Materials
DGAL was purchased from Sigma Aldrich, USA (CAS 
no. 59-23-4). EMP was purchased from Shanghai Biolang 
Biotechnology Co., Ltd., China (CAS no. 864070-44-0). 
Vitamin C was purchased from Hangzhou Hyper Chemi-
cals Limited, China (CAS no.86404-04-8).

Animal allocations

For sample size computation, program G Power was uti-
lized (Faul et al. 2007) based on Cohen’s principles (Cha-
ran and Kantharia 2013). The groupings were constructed 
randomly using a table of random integers. The mice were 
systematically allocated into properly marked boxes and 
individually identified with tail tags to mitigate the occur-
rence of misinterpretation (Festing 2006).

The study modules employed a randomized block de-
sign. The mice were categorized into four distinct blocks. 
In block one, G1 received their treatment plan. Block 
two (G2) commenced treatment in the subsequent week. 
Block three (G3) commenced treatment in the subsequent 
week. Finally, block four (G4) commenced treatment in 
the subsequent week.

Outcome measures

Weight measurements were conducted for all mice at 
the beginning of the study and before their euthana-
sia. After the medication delivery period, all mice were 
subjected to euthanasia, a process that occurred after 
16 weeks. After the conclusion of the therapeutic in-
tervention, all animals had a period of fasting lasting 
10 hours. Subsequently, they were subjected to intra-
peritoneal (IP) anesthesia with a dosage of 80 mg/kg of 
ketamine and 10 mg/kg of xylazine. After undergoing 
complete anesthesia, the mice were euthanized using 
carbon dioxide (Underwood and Anthony 2020; Yari-
beygi et al. 2023).

After the conclusion of every treatment period for ev-
ery group, a dissection procedure was conducted on de-
ceased animals. The objective of this dissection was to 
extract the heart, which was subsequently weighed to cal-
culate the organ index (Chen et al. 2021).

 (% ) =
organ

Organ index
 weight (g)

body  weight (g)
 100%x

The heart tissue was subjected to histological inves-
tigation after being rinsed with phosphate-buffered sa-

Figure 1. Flow chart of the study.
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line (PBS) at a pH of 7.4. Subsequently, the convention-
al processing protocol utilizes the paraffin-embedded 
technique (Sadeghipour and Babaheidarian 2019). An 
additional cardiac and cutaneous tissue sample was col-
lected and subjected to a cold PBS (pH 7.4) rinse. Sub-
sequently, the material was dried using filter paper for 
ELISA evaluation using an ELISA reader from Diagnos-
tic Automation / Cortez Diagnostics, California, USA. 
Additionally, the tissue was measured using a sensitive 
balance. In the ELISA procedure, 50 mg of tissue was 
placed in an Eppendorf tube (Eppendorf, Hamburg, 
Germany) with 0.45 ml of cooled PBS. The tissue was 
then finely chopped into small fragments. Subsequent-
ly, the tissue sample tube was placed in a beaker filled 
with ice to maintain a low temperature. The homogeni-
zation was done using an electrical tissue homogenizer 
machine (Staruar, England). The resulting homogenate 
was then centrifuged at a temperature of four degrees 
Celsius and a speed of 2000 revolutions per minute for 
20 minutes. This centrifugation was performed using 
a cold centrifuge manufactured by Thermos Scientific 
in the United States. The supernatant was obtained us-
ing a micropipette (Bioevopeak, China) and stored at 
-20 °C until the analysis day (Saja Majeed and Sarmed 
Hashim 2022).

Assessment of heart tissue histopa-
thology

A photograph was produced for every mouse using a dig-
ital camera and a mounted light microscope. The histopa-
thologist assessed hypertrophic cells in heart tissue using 
the H&E stain. The morphology of the cardiac myocytes 
was visualized using a light microscope (Olympus BX51 
Microscope, Olympus Corporation, Japan). Five areas of 
a slide corner and the central region were randomly ob-
served at a magnification level of X40.

Biochemical analysis

The supernatant obtained from the homogenized heart 
and skin tissues of the tested animals was warmed up 
and subjected to biochemical testing using the dou-
ble-sandwich ELISA method. The levels of Tumor ne-
crosis factor-alpha (TNF-α), Interleukin-1Beta (IL-1β), 
Glutathione peroxidase (GSH-px), Malondialdehyde 
(MDA), Collagen I (Col-I), and Collagen III (Col-III) 
were determined using specific ELISA kits (Mouse Tu-
mor Necrosis Factor A, TNF-Α ELISA KIT, product 
ID SL0547Mo; Mouse Interleukin one beta, IL-1beta 
ELISA Kit, product ID SL0316Mo; Mouse Glutathione 
Peroxidase, GSH-Px ELISA Kit, product ID SL0241Mo; 
Mouse Malondialdehyde (MDA) ELISA Kit, product 
ID SL0370Mo; Mouse Collagen Type I,(Col-I) ELISA 
Kit, product ID SL0141Mo; Mouse Collagen Type III 
(COL-III) ELISA Kit, product ID: SL0942Mo; Sunlong 
biotech, China).

Statistical analysis

Statistical analysis was performed utilizing GraphPad 
Prism version 10.0.1, and one-way ANOVA was used to 
assess the difference in groups with the Tukey test as a post 
hoc for pair-wise comparison. The P-value is considered 
to be significant if ≤0.05.

Results

TNF-α, IL-1β, and MDA levels were significantly higher 
in G2 compared to the other groups; there was no signif-
icant difference in levels between G1, G3, and G4. Mean-
while, levels of GSH-Px were significantly lower in G2 
compared to the other groups; no significant difference in 
levels between G1, G3, and G4, as illustrated by Table 2 
and Fig. 2.

COL-1 and COL-3 levels were significantly lower in 
G2 compared to other groups; levels in G4 were signifi-
cantly lower than in G3 and G1. Regarding heart index, 
G2 showed significantly higher levels compared to other 
groups; levels in G4 were significantly higher than G1, as 
demonstrated in Table 3 and Fig. 3.

Normal cardiac cells are illustrated in Fig. 4A, which 
shows a syncytium composed of cardiac fibers exhibiting 
central nuclei. Certain fibers have intercalated discs that 
are faintly pink in color. Red blood cells are observed to 
be arranged linearly within capillaries amidst the fibers. 
Fig. 4B for animals that received DGAL shows bizarre, ir-
regular, and hyperchromatic nuclei. In contrast, Fig. 3C 
for animals received 1 mg/kg EMPA showing some irreg-
ular and hyperchromic nuclei with the start of healing to 
normal heart tissue.

Table 2. Evaluation of study agents on inflammatory mediators 
and oxidative stress markers.

Groups TNF-α (ng/ml) IL-1β (pg/ml) GSH-Px (ng/ml) MDA (ng/ml)
G1 28.0±1.1b 16.0±2.5a 5.1±0.6c 23.5±8.4b

G2 304.0±102.9a 70.2±6.8a 0.3±0.2a 204.7±56.9a

G3 87.0±10.1b 29.5±5.5b 3.7±0.6b 58.6±9.1b

G4 91.7±9.6b 30.6±5.5b 3.3±0.6b 66.7±8.3b

p-value <0.001 <0.001 <0.001 <0.001

Columns with different litters indicate a significant difference (p-value≤0.05).
Parameters presented as mean ± standard deviation.
G1: Normal control, G2: Induction with DGAL, G3: vitamin C 100 mg/kg, G4: 
EMP 1 mg/kg.

Table 3. Evaluation of heart index and skin collagen.

Groups COL-1 (pg/ml) COL-III (pg/ml) Heart index (%)
G1 3,062.2±343.3a 2,862.2±343.3a 0.37±0.10c

G2 885.7±242.5d 685.7±242.5d 0.85±0.05a

G3 2,604.1±310.6b 2,204.1±310.6b 0.55±0.07b

G4 1,783.6±186.9c 1,583.6±186.9c 0.55±0.09b

p-value <0.001 <0.001 <0.001

Columns with different litters indicate a significant difference (p-value≤0.05).
Parameters presented as mean ± standard deviation.
G1: Normal control, G2: Induction with DGAL, G3: vitamin C 100 mg/kg, G4: 
EMP 1 mg/kg.
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Discussion
The current investigation observed that the administra-
tion of DGAL led to the development of cardiac hyper-
trophy. However, when the mice were treated with 1 mg/
kg EMP, this impact was mitigated, resulting in a lower 
heart index in G4 than in G2. According to a study con-
ducted by Refaie et al., it was observed that there was a 
considerable rise in heart weights in the Cadmium car-
diotoxic group as compared to the control group. In con-
trast, the administration of Cd in combination with da-
pagliflozin resulted in a notable reduction in heart weight 
compared to the group that received Cd alone (Refaie et 

al. 2022); these findings agree with the results of the cur-
rent study.

Multiple studies have demonstrated the potential of 
this class of drugs to improve heart morphological alter-
ations, such as cardiac hypertrophy and fibrosis. Sodi-
um-glucose co-transporter two inhibitors (SGLT2i) have 
been observed to reduce both cardiac preload and after-
load by reducing intracellular sodium (Na+) and calcium 
(Ca2+) loading. These findings suggest that EMP, a specific 
SGLT2i, may have a preventive effect on cardiac hypertro-
phy (Lahnwong et al. 2018).

One potential mechanism is the beneficial impact of 
EMP on cardiomyocytes, which may be achieved by the 

Figure 2. Assessment of inflammatory and oxidative stress markers.

Figure 3. Assessment of COL-1 and -3 levels.
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upregulation of SIRT-1 expression (Yang et al. 2023). In 
the context of cardiomyocytes, the nuclear isoform of 
SIRT-1 serves as a protective mechanism against myocyte 
damage caused by oxidative stress. This protective mecha-
nism is achieved by upregulating MnSOD production and 
promoting increased antioxidants, including catalase. The 
overexpression of SIRT-1 in cardiac tissue resulted in the 
mitigation of age-related elevations in ventricular hyper-
trophy (Alcendor et al. 2007; Chong et al. 2012).

One of the most notable changes with advancing age 
is the immune response disruption, leading to a per-
sistent systemic inflammatory condition (Chung et al. 
2019). The current study assessed many inflammatory 
markers derived from the cardiac homogenate content 
in distinct groups under investigation. The findings re-
vealed a considerable enhancement of TNF-α and IL-1β 
in mice treated with EMP. In a study conducted by El-
Mahdy et al., rats were subjected to a high carbohydrate, 
high-fat diet (HFHC). The results indicated a significant 
increase in levels of TNF-α and IL-1β in rats that were 
exclusively fed the HFHC diet compared to the control 
group. In rats administered oral dapagliflozin through-
out the trial, a notable decrease in levels of TNF-α and 
IL-1β was observed when compared to rats on an HFHC 

diet, which aligns with the present study’s findings (El-
Mahdy et al. 2020).

EMP can potentially mitigate calcium excess, reducing 
inflammation and modulating various proinflammatory 
cytokines, including the IL-1β pathway (Shibusawa et al. 
2019). SGL2i was found to induce a phenotypic shift of 
M1 macrophages, which are known to mediate inflamma-
tory responses, towards an M2 macrophage phenotype. 
The results of this study suggest that EMP has direct an-
ti-inflammatory effects that are not dependent on glucose 
concentrations. These effects are achieved by suppressing 
TLR-4 expression and NF-kB activation and inhibiting 
proinflammatory mediator production (Abdollahi et al. 
2022). Furthermore, the administration of SGL2i treat-
ment resulted in elevated levels of the anti-inflammatory 
(IL-10), which controls both acute and chronic inflam-
mation by inhibiting the production of proinflammatory 
cytokines from immune cells such as tumor necrosis fac-
tor-alpha (TNF-α) (García-Ropero et al. 2019).

The current study assessed two oxidative stress markers 
in heart homogenate content across different groups un-
der investigation. The findings revealed that the amount of 
GSH-Px was increased, while the level of MDA was lowered 
in mice treated with EMP compared to the group subject-

Figure 4. Cross-sections of heart tissue of mice. A: In mice received normal saline only (G1); B: In mice received DGAL only (G2); 
C: In mice received DGAL and EMP 1 mg/kg after the end of induction (G4) (Olympus BX51microscpose and a software DP con-
troller X40).
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ed to induction. The present study’s findings are consistent 
with prior research conducted on mice, which demonstrates 
that SGL2i effectively decreases the levels of MDA in the 
cardiac tissue homogenates of diabetic animals compared 
to untreated diabetic animals. In contrast to the group of in-
dividuals with untreated diabetes mellitus, the groups who 
received treatment exhibited a significant augmentation in 
the levels of the antioxidant GPx (El-Shafey et al. 2022). Ac-
cording to a study conducted by Kıngır et al., the admin-
istration of dapagliflozin led to a decrease in MDA levels 
and an increase in GSH levels. These findings align with the 
results of the present investigation (Kingir et al. 2019).

SGLT2 inhibitors safeguard mitochondrial activity by 
preserving a balanced redox state. Moreover, the induc-
tion of normoglycemia by SGLT2 inhibitors has been 
found to decrease the levels of advanced glycation end 
products (AGEs), significantly contributing to the cre-
ation of free radicals; this is because hyperglycemia serves 
as a strong stimulus for the generation of AGEs and inten-
sifies the interaction between AGEs and the receptor for 
AGEs (RAGE), known as the AGEs-RAGE axis (Habibi 
et al. 2017). Moreover, it has been observed that SGLT2 
inhibitors could mitigate insulin resistance, a condition 
intricately associated with oxidative stress, in individuals 
with diabetes; this implies that these inhibitors may indi-
rectly influence the reduction of oxidative stress (Rosen-
stock and Ferrannini 2015; Shin et al. 2016).

The current investigation showed that EMP exhibited 
notably elevated levels of COL-I and COL-III in the skin 
compared to the induction group. The study conducted by 
Horikawa et al. demonstrated that diabetic mice treated 
with dapagliflozin had elevated levels of total skin colla-
gen in comparison to diabetic mice that were not treated. 
This finding aligns with the findings of the present inves-
tigation (Horikawa et al. 2022). Activated mast cells have 
been observed to enhance the production of MMP-1, an 
enzyme known for its collagenolytic properties. Con-
sequently, this process results in a decrease in collagen 
levels. Conversely, the administration of DAPA has been 
found to effectively decrease the levels of both MMP-1 
and mast cells (Horikawa et al. 2022).

The accumulation of reactive oxygen species (ROS) 
from free radicals is widely acknowledged as a prominent 
factor contributing to skin aging (Piotrowska and Bart-
nik 2014). The elevation of reactive oxygen species (ROS) 
production commonly leads to mitogen-activated protein 
kinase (MAPK) activation. The loss in collagen formation 
with aging can be attributed to the activation of MAPK, 
which subsequently stimulates AP-1 (activated protein 1), 
increasing MMP expression (Son et al. 2011). The long-
term oxidative damage in cells and tissues influences the 
aging process. As a result, intervention strategies can be 
employed to specifically address this damage and poten-
tially mitigate the detrimental effects associated with ag-
ing (Reilly and Lozano 2021). The current investigation 
showed that the administration of EMP in mice signifi-
cantly reduced levels of GSH-Px. Additionally, there was a 
large increase in levels of MDA in mice treated with EMP, 
consistent with earlier findings reported in this study. 
These results provide partial insight into the mechanism 
underlying the anti-aging effect exhibited by EMP.

Study limitations

The current study focuses on assessing the anti-aging ef-
fect in mice models based on inflammatory and oxidative 
stress theory; however, aging involves more than these 
pathways, like genetic and molecular pathways, which we 
could not assess in the current work to analyze the effects 
of EMP comprehensively. Additionally, our findings fo-
cus on two organs, namely, the heart and the skin, and we 
could not examine the other organs, like kidneys, which 
could benefit from the effect of EMP.

Conclusion

EMP positively affects several aging parameters in mice, as 
shown by this study. It decreased myocytic weight, restor-
ing them to normal size, improved skin vitality by improv-
ing the level of collagen, decreased the burden of inflam-
matory mediators, and improved antioxidants’ impact.
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