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Abstract
Adamantane is a weakly functional hydrocarbon widely used to develop new drug molecules to improve their pharmacokinetic 
and pharmacodynamic parameters. The compound has an affinity for the lipid bilayer of liposomes, enabling its application in 
targeted drug delivery and surface recognition of target structures. This review presents the available data on developed liposomes, 
cyclodextrin complexes, and adamantane-based dendrimers. Adamantane has been used in two ways – as a building block to which 
various functional groups are covalently attached (adamantane-based dendrimers) or as a part of self-aggregating supramolecular 
systems, where it is incorporated based on its lipophilicity (liposomes) and strong interaction with the host molecule (cyclodextrins). 
Adamantane represents a suitable structural basis for the development of drug delivery systems. The study of adamantane derivatives 
is a current topic in designing safe and selective drug delivery systems and molecular carriers.
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Introduction
Adamantane has limited application in the industry be-
cause it is a weakly functional hydrocarbon used in 
polymer production, and its derivatives are of increas-
ing interest in practice (Hu et al. 2022). Adamantane is 
applied as a common reference standard for chemical 
shifts in solid-phase nuclear magnetic resonance (NMR) 
spectroscopy (Brouwer and Mikolajewski 2023). In color 
lasers, adamantine can be used to extend the life of the 
gain medium. Lenzke et al. (2007) proved that adaman-
tane is not photo-ionizable in the atmosphere because its 
absorption regions are in the vacuum-UV region of the 
spectrum (Lenzke et al. 2007). Аdamantane is an attrac-
tive candidate for fuel in spacecraft engines because it is 
easily ionized, allowing it to be stored in solid form in-
stead of in a pressure tank, and importantly, it is relatively 
non-toxic (Appliedinosystems (AIS)). Some alkyl deriva-

tives of adamantane have been used as a working fluid in 
hydraulic systems (Jia et al. 2021). Jeong (2002) developed 
the first adamantane-based polymers for application as 
touch screen coatings. Diamondoids such as diamantane, 
triamantane, tetramantane, and [1(2,3)4]pentamantane 
are of interest due to their easy availability (Fokin et al. 
2006). Their selective functionalization, studied by Weigel 
et al. (2022) and Yoshihara et al. (2023), provides interest 
in electronics and nanotechnology (Cameron et al. 2022).

Adamantane is an organic substance comprising four 
isopropyl groups bonded to a central carbon atom in a cu-
bic configuration (Fig. 1).

This unique structural element, “diamond hydrogen”, 
is very stable and oxid-resistant. Its main advantages 
as a component of some drug delivery systems (DDS) 
are as follows: 1) chemical stability, incl. to oxidation; 
2) hydrophobicity, providing stability in aqueous solu-
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tions; 3) small molecular size, facilitating its incorpo-
ration into drug delivery formulations without altering 
their physicochemical properties; 4) lipophilicity, useful 
for engineering systems to cross lipid membranes; 5) high 
adsorption capacity on materials surface makes it suitable 
for DDS that need to be adsorbed on a specific surface; 6) 
low toxicity does not cause allergic reactions.

The structural and chemical features of adamantane 
open new possibilities for developing structural scaffolds 
or carriers for drug delivery. The substance can be used in 
two ways: as a building block to which various functional 
groups are covalently attached (adamantane-based den-
drimers) or as a component of self-aggregating supramo-
lecular systems (liposomes) and as a high interaction with 
the host molecule (cyclodextrins).

Because of its biocompatibility, non-toxicity, low cost, 
and ease of availability, adamantane provides an ideal struc-
tural basis for creating DDS. Liposomes are used as artificial 
biological membranes; thus, the incorporation of adaman-
tane derivatives into the bilayers provides excellent oppor-
tunities to study cellular recognition, based on the possibil-
ity of binding different ligands to the adamantane moiety, 
according to Štimac et al. (2019). As a result, the molecule 
plays an essential role in comprehending the interactions 
between manufactured nano-vesicles and particular cellular 
receptors and elucidating the receptor-targeting process in 
living cells. Investigating novel adamantane and other dia-
mondoid compounds is an important topic in nanomedi-
cine, particularly in developing safe and selective DDS.

Pharmaceutical application of 
adamantane

A particular area of research interest is the development 
of new adamantane-based drug molecules with improved 
pharmacokinetic and pharmacodynamic parameters 
(Korabecny et al. 2019). The role of adamantyl moiety 
as the main pharmacophore in biologically active com-
pounds is well known. Incorporating the adamantyl core 
into molecules can significantly affect their lipophilicity, 
pharmacological and biological properties (Chochkova et 
al. 2022). Therefore, adamantane can successfully modu-
late the therapeutic index of parent structures, which is 
why it has been widely used in constructing agents with 
various therapeutic fields of application.

To date, numerous adamantane-based compounds with 
significant biological activities have been synthesized. The 
review by Lamoureux and Artavia (2010) covers a wide range 

of substances containing an adamantane structure with pro-
nounced biological effects – antiviral (Shchelkanov et al. 
2014), antibacterial (Orzeszko et al. 2000; Chochkova et al. 
2022), antimycotic, trypanocidal (Papanastasiou et al. 2008), 
anti-inflammatory, analgesic, antiulcer, antidepressant, anx-
iolytic, anticonvulsant, antiparkinsonian, neuroleptic, im-
munostimulant, antitumor (Wang et al. 2004) hypoglyce-
mic, dilating cerebral vessels, antihypertensive, antioxidant 
(Worachartcheewan et al. 2014), etc. Some of these adaman-
tane-based compounds have the potential to positively affect 
multiple sclerosis, peripheral neuropathy, addictions, schizo-
phrenia, neurological and neurodegenerative diseases, asth-
ma, and others. In addition, many analogs bearing an ada-
mantane structure exhibit inhibitory activity against various 
types of enzymes, for example, 11β-hydroxysteroid dehydro-
genase type 1 (Lee et al. 2014), tyrosine kinase (Avramis et al. 
2002), glucosyl-ceramide synthase (Bijl et al. 2008), cholin-
esterase (Spilovska et al. 2013, 2015), glycogen synthase ki-
nase-3 (Goñi-Oliver et al. 2009), steroid sulfatase (Horvath et 
al. 2004) and tyrosyl-DNA-phosphodiesterase 1 (Munkuev 
et al. 2021). Upgraded information about the synthesis and 
biological activities of novel adamantane-containing thiazole 
compounds was proposed by Warda et al. (2022).

Of interest are the different pharmacotherapeutic ap-
plications of the same substance as a component of poly-
pharmacological or multi-target drugs. The latter confirms 
the versatility of the adamantyl group in drug design.

The concept of adamantane in the role of an “anchor” 
in the lipid bilayer of liposomes, proposed by Štimac et al. 
(2017), provides an opportunity for its application in the 
field of targeted drug delivery and surface recognition of 
target structures. The results encourage the development 
of new self-assembled supramolecular systems for basic 
chemical research and biomedical applications. The use of 
adamantane and its homologs in nanotechnology is prom-
ising. The cage-like structure of the substance allows the 
incorporation of molecules to be released inside the human 
body upon matrix breakdown (Mansoori 2007; Ramezani 
and Mansoori 2007). Also, two separate studies – by Mar-
kle (2000) and Garcia et al. (2009), proposed its use as a 
structural element for the spontaneous formation of mo-
lecular crystals. Recently, Yeung et al. (2020) summarized 
the possibilities for applying hydrocarbon compounds like 
adamantine with a cage-like structure in nanotechnology, 
and the prospects of this branch of medicinal chemistry.

Incorporation of adamantane 
into liposomes

Multidisciplinary research in chemistry, biology, and 
medicine helps advance fundamental biomaterial knowl-
edge and the development of novel hybrid products with 
practical biological applications (Xu et al. 2019; Hu et al. 
2020). Lipids are characterized by amphiphilicity and pos-
sess diverse chemical properties, making them powerful 
tools in nanotechnology (Maurya et al. 2022). Liposomes 
are non-toxic, biodegradable vesicles that can contain 
both hydrophilic and hydrophobic compounds (Fig. 2).

Figure 1. Adamantane chemical structure (http://www.chem-
spider.com/Chemical-Structure.8883.html).
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Muntean et al. (2022) reviewed their use as active prin-
cipal carriers of active pharmaceutical ingredients (API) 
in DDS.

Controlling the spontaneous association of lipids was 
achieved by Antonietti and Förster (2003), allowing the 
construction of novel lipid-based DDS and biomaterials 
with better characteristics. The most successful strategy is 
to utilize targeted liposomes with surface-attached ligands 
capable of identifying and attaching to target cells. There-
fore, passive and active targeting accomplish liposomal 
drug accumulation in specific tissues and organs.

Adamantane-containing liposomes (ACLs) have sev-
eral potential applications in medicine. One of the most 
promising is drug delivery, where the ACL can be used to 
encapsulate drugs and target them specifically to the site 
of the disease. This approach can increase the effectiveness 
of the drug while reducing adverse effects. Additionally, 
ACLs have been shown to have antiviral properties and 
may have potential use in treating viral infections. They 
may also be helpful in gene therapy, where they can deliv-
er therapeutic genes to specific cells.

One of the approaches for intracellular delivery of pro-
teins and liposomes is based on supramolecular host-guest 
interaction, including adamantine as a guest molecule for 
noncovalent supramolecular interaction (Kitagishi et al. 
2020). The method aims for a chemical modification to fa-
cilitate intracellular delivery, making it suitable for various 
bioengineering processes, such as protein-based therapy, 
cell reprogramming, and genome editing.

The adamantyl radical introduction into various drug 
molecules often increases their biological activity, and 
studying their mechanism of action broadens the under-
standing of their pharmacological profiles.

The ability of amantadine to disrupt the fusion of 
virus particles with the host cell membrane during 
viral infection was established by Sugrue and Hay 
(1991). This generated an uprising of research on the 
interactions of adamantane with liposomes, which 
serve as cell membrane models. Data from the studies 
of Štimac et al. (2012) and Šekutor et al. (2014) on 
adamantyl derivatives – tripeptides, glycopeptides, and 

guanidines, their incorporation in liposomes and their 
interaction with the liposomal bilayer in the form of an 
artificial biological membrane, were the basis for the 
use of adamantyl radical in the design of new targeted 
drug-delivery systems. Some of the research focused 
on the distribution and localization of adamantane and 
amantadine in lipid bilayers (Ribić et al. 2020; Yang et al. 
2021), resulting in which two populations of amantadine 
found within the phospholipid bilayer – one near the 
surface and the other much deeper – in the hydrophobic 
core of the bilayer, with most of the amantadine 
occupying a surface position. The localization of the 
compound depends on its initial protonation. In 
experimental conditions, no changes in the double-layer 
structure were detected.

Adamantyl tripeptides are a class of chemicals pro-
duced from bacterial peptidoglycans (Ribić et al. 2019). 
They were pentapeptide disaccharide fragments originally 
extracted from penicillin-treated Brevibacterium divari-
catum (Ellouz et al. 1974). The structure required for the 
compounds’ immunostimulatory effect was N-acetylmu-
ramyl-L-alanyl-D-isoglutamine (also known as muramyl 
dipeptide), which can be identified as part of the previous-
ly stated peptidoglycan monomer (PGM) (Peroković et al. 
2021). Tomašić and Hršak discovered in 1987 that PGM 
exhibited many biological actions, including antimeta-
static and anticancer activity, and enhanced the immune 
response in experimental animals (Tomašić and Hršak 
1987). Ljevaković et al. (2000) investigated for the first 
time in vivo the influence of structural modifications of 
the parent molecule on biological activity. An adamantyl 
radical was incorporated into the PGM with comparable 
biological activity to the parent structure. Vranešić et al. 
attempted in 1993 to synthesize a novel type of molecule 
in which the adamantyl residue was connected to a short 
synthetic peptide, resulting in two diastereoisomers, as 
pointed out by Levak et al. (2023). The chosen peptide has 
a comparable construction to the natural peptidoglycan 
L-alanyl-D-isoglutamine. The interaction between two 
adamantly tripeptide substances and phospholipids in li-
posomal bilayers was studied for the first time by Frkanec 

Figure 2. Incorporation of hydrophobic and hydrophilic compounds in liposomes.
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et al. (2023). The liposomal bilayer structure included egg 
phosphatidylcholine, cholesterol, and diacetyl phosphate, 
as well as labeled fatty acids (n-doxyl stearic acid) with a 
paramagnetic nitroxide moiety located at various carbon 
atoms (at 5, 7, and 16 carbon atoms). Consequently, all 
spin-labeled lipids in the liposomes tested in the study, 
including 16-doxyl stearic acid in the liposomes’ hydro-
phobic core, changed their mobility characteristics after 
the entrapment of the substances.

Mannose conjugates of 1-amino adamantane and ad-
amant-1-yltripeptides were synthesized in other studies 
by Ribić et al. (2011, 2012). Their target was the mannose 
receptors expressed on the cell surface of many immu-
nocompetent cells, including macrophages and dendritic 
cells. The influence on the specific immune response was 
evaluated in vivo. These compounds were also incorporat-
ed into liposomes and characterized by Štimac et al. (2012) 
using additional physicochemical methods. Because of its 
lipophilic qualities, the adamantyl group was found in the 
lipid core of the bilayer, whereas the contained mannose 
hydrophilic portion was found on the liposomal surface. 
The presented liposomal system with included adamantyl 
glycoconjugates served as the foundation for flexible car-
bohydrate-containing targeted DDS, with the adamantane 
moiety operating as an anchoring framework for different 
carbohydrate molecules of interest. According to Štimac 
et al. (2017), this method can also be used to analyze pro-
tein interactions with membrane receptors.

Šekutor et al. (2014) reported the successful incorpora-
tion of adamantyl aminoguanidine derivatives into lipo-
some model membrane systems combining in one mol-
ecule the highly polar guanidine group and the lipophilic 
“anchoring” adamantyl radical. The guanidine group was a 
key structural motif associated with hydrophilic cell-pene-
trating peptides (Zhang et al. 2019; Fernández Caro 2020). 
Based on the adamantyl moiety’s affinity for the lipid bilay-
er, adamantyl aminoguanidines were membrane-compat-
ible. The guanidine subunit remained on the exterior side 
of the lipid bilayer, facing outwards. At the same time, the 
molecules were integrated into multilamellar liposomes, 
and the vesicle thus generated was implicated in surface 
recognition (Rozas et al. 2013). Liposomes containing ad-
amantyl aminoguanidine were similar in size to the empty 
liposomes, but their surface charge was substantial. When 
studying their interaction, liposomes containing only 
phosphate groups and those with adamantyl-guanidine 
derivatives were mixed, and the guanidine fragments on 
the surface successfully interacted with the complementa-
ry liposomes, leading to liposome recognition and subse-
quent aggregation (Šekutor et al. 2014).

Incorporation of adamantane 
into cyclodextrin complexes

Organic polymers, colloids, or biomolecules, including 
DNA, proteins, and lipids, can also create nano-devices. 
Carbohydrates, mainly polysaccharides, receive special 
attention. Cyclodextrins (CDs) have multifunctional fea-

tures that enable them to be employed in a wide range of 
drug delivery routes, such as oral, transdermal, or ocular 
administration (dos Passos Menezes et al. 2019). The pub-
lication of Lachowicz et al. (2020) reviewed cyclodextrin 
products with different administration routes. Cyclodex-
trins’ structural features were described by Szejtli and Osa 
(1996) and later further studied by Biwer et al. (2002). 
Cyclodextrins’ most stable three-dimensional molecular 
configuration was a hollow truncated cone, also known 
as a “doughnut-shaped structure.” The primary hydroxyl 
groups are orientated towards the top edge of the truncat-
ed cone, while the secondary hydroxyl groups are oriented 
towards the lower edge (Fig. 3).

The outside surface of cyclodextrins is hydrophilic due 
to the presence of hydroxyl groups, but the cavity contain-
ing glycosidic oxygen is hydrophobic. The hydrophobic in-
terior determines the possibility of CDs being used as car-
riers – for inclusion or partial encapsulation of organic and 
inorganic compounds (guests) without forming a covalent 
bond. The ability to form complexes has been well studied 
in the studies of Khan et al. (1998) and Li and Loh (2008). 
In their paper, Poulson et al. (2022) reviewed the recent 
achievements in the capabilities of cyclodextrins and their 
derivatives to encapsulate and transport various molecules.

Their large size and hydrophilicity limit the ability to 
cross membranes, respectively, the application in phar-
maceutical practice. Cyclodextrins do not attach to drug 
molecules effectively enough, causing them to be lost in 
the cavity of the “doughnut” before being delivered to the 
target. Natural CDs are typically derivatized to improve 
their usability (Dhiman and Bhatia 2020). At the turn of 
the century, many independent investigations discovered 
that amphiphilic cyclodextrins may spontaneously form 
aggregates such as bilayers, micelles, and bilayer vesicles 
(Liu et al. 2020; Muankaew et al. 2020; Araújo et al. 2022). 
These aggregates, particularly bilayer vesicles, can solve 
the issues above while acting as drug-delivery vehicles 
with hydrophobic and hydrophilic affinities. Numerous 
pieces of research revealed that cyclodextrins may form 
complexes with various guest molecules, including medi-
cines, surfactants, and polymers (Araújo et al. 2021; Mo-
hamadhoseini and Mohamadnia 2021; Pandey et al. 2021).

The ability of cyclodextrins to interact with diverse chem-
icals serves as the foundation for novel drug delivery strat-
egies based on supramolecular recognition of nanoparticles 

Figure 3. Cone-shaped cyclodextrin structure.
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made up of amphiphilic cyclodextrin and a guest molecule. 
Among the numerous chemical groups that can interact 
with CDs, the adamantyl moiety serves as a model guest 
molecule. It has a strong association constant (10-3 ÷ 10-5 
M-1) and fits nicely into the β-cyclodextrin cavity (Musumeci 
et al. 2020). Based on this interaction and the easy formation 
of a “host-guest” complex between adamantane and CDs, 
many self-aggregating cyclodextrin DDS have been devel-
oped, as well as those for fluorescent sensing and bioimag-
ing (Narayanan et al. 2022). In addition, carbohydrates are 
adequate ligands for cellular receptors, for example, lectins, 
which stimulate molecular transport across biological mem-
branes. Binkowski et al. (2005) discovered that adamantyl-
ated monosaccharides are a novel family of chemicals that 
may be utilized to modify the surface of CDs. Voskuhl et al. 
(2010) created new carbohydrate-adamantane conjugates to 
investigate their complexes with CDs and interactions with 
specific lectins, and Vico et al. (2011) transformed amphi-
philic β-cyclodextrin vesicles with maltose and lactose when 
the host molecule interacted with adamantane. The artificial 
glycocalyx on the surface of amphiphilic cyclodextrin ves-
icles was used in research with lectins, including maltose, 
concanavalin A, and lactose with peanut agglutinin. Amphi-
philic CDs have also been implemented as artificial receptor 
units in liposomes, as reported by Kauscher et al. (2013).

Bohm et al. (2011) explored the high stability of cyclo-
dextrin-adamantane complexes in the synthesis of tubular 
vesicles from cyclodextrin and adamantyl-modified hy-
perbranched poly(ethyleneimine) that self-aggregate with 
the modified fluorescent dye calcein (Fig. 4).

The disclosed supramolecular arrangement possess-
es long-term stability over a wide pH range, indicating a 
significant potential for developing novel materials with 
better characteristics (Ippel 2019).

Zhang et al. (2018) developed a self-assembled supramo-
lecular polymeric DDS based on guest-host interaction for 
combined photothermal antitumor chemotherapy. It com-
prises β-cyclodextrin functionalized hyaluronic acid and an 
adamantane-linked camptothecin/IR825 dye that absorbs 
in the near-infrared (NIR) region. Hyaluronic acid provides 
colloidal stability and biocompatibility of the complex, and 
the disulfide bridge in the camptothecin/dye conjugate is 
cleaved upon reduction, with subsequent release of the 
pharmacological agent and recovery of fluorescence emis-
sion. At the same time, the dye converts locally absorbed 

light into heat, making the system suitable for photother-
mal therapy. In an in vitro study with three types of cancer 
cell lines, the nano platform was found to rapidly enter and 
release camptothecin, followed by their successful destruc-
tion upon NIR irradiation. Application to mice with exper-
imental tumors resulted in significant tumor regression, 
revealing the potential of this nano platform to provide a 
targeted combined photothermal chemotherapy.

Tumor-associated macrophages (TAMs) are overex-
pressed in solid cancers. They have an immunosuppres-
sive function, which supports the growth of the tumor and 
avoids the immune reaction. Current studies are focused 
on discovering agents (drugs, nanomaterials) that rewire 
TAMs to a tumor-suppressive type. However, reducing sys-
temic side effects and delivering API to the macrophages 
is a challenge. Rodell et al. (2019) developed an adaman-
tane-modified derivative of the Toll-like receptor (TLR) ag-
onist resiquimod. Adamantane interacts with cyclodextrin 
nanoparticles (CDNPs) as a guest, allowing for the provi-
sion of a drug in the form of an aqueous solution and its 
TAM-targeted administration. In a study of therapeutic ef-
fectiveness and systemic adverse effects in the MC38 cancer 
mouse model, the molecule retained macrophage function 
by agonizing TLRs, and the adamantane moiety increased 
drug affinity for CDNPs. The possibility of strong nanopar-
ticle-drug interactions to minimize the systemic toxicity of 
TLR agonists while retaining therapeutic effectiveness and 
reducing tumor development was proven in this work.

In a study by Kitagishi et al. (2020), the carrier mole-
cule β-cyclodextrin was modified with octa arginine (R8), a 
cell-penetrating peptide. Different proteins (green fluores-
cent protein, β-galactosidase, and IgG) were partially mod-
ified by binding to adamantane residues and successfully 
delivered into HeLa cells by supramolecular host-guest in-
teractions. Such results were also obtained with liposomes 
of 100 nm size, with adamantane residues on their surface.

In treating cancer diseases, the main goal of mod-
ern nuclear medicine is to reduce the radiation dose to 
a minimum. This branch of medicine uses macromole-
cules for pretargeting, but significant problems include a 
need for biocompatibility and in vivo stability. Jallinoja 
et al. (2023) designed complexes of cucurbit[7]uryl and 
adamantane as the foundation for antibody-based pre-
targeted PET. The two chemicals were biocompatible, 
tolerated well, and interacted on a host-guest basis. The 
researchers developed three 64Cu-labeled adamantane 
guest ligands and tested them in human pancreatic can-
cer BxPC3 and MIAPaCa-2 mice xenografts. The study 
showed that this approach is suitable for pretargeted PET 
because of the proven stability of the adamantane com-
plexes and their specific and high uptake by tumor cells.

Incorporation of adamantane 
into dendrimers

Dendrimers are highly branching macromolecules with 
many functional groups expressed on the dendritic frame-
work (Malkoch and Gallego 2020). They are spherical poly-Figure 4. A schematic view of tube-shaped cyclodextrin complex.
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mers having a core and a sequence of chemical shells. Each 
shell is called a generation, and each branch is referred to 
as a dendron. Dendrimers have a multivalent surface, in-
ner shells that surround the core, and a core with dendrons 
attached. Higher-generation cores, shielded from the out-
side by the dendrimer surface, provide unique nano-envi-
ronments suitable for including guest molecules. The vari-
ous functional groups on the surface of dendrimers can be 
transformed further, resulting in variations in dendrimer 
features (Priyadarshi et al. 2021; Sharma et al. 2022).

Polyethyleneimine and polyamidoamine-containing 
dendrimers are effective non-viral transfection agents 
that can deliver genetic material into the cell, according to 
Saeed et al. (2022). Since the research by Duncan and Izzo 
(2005) revealed some undesirable dose-dependent cyto-
toxic effects, to reduce cytotoxicity, Lamanna et al. (2011) 
designed a new type of polycationic dendron based on tet-
ra-functionalized adamantane. In a study of polycationic 
adamantane dendrons of different generations, Grillaud 
et al. (2014) reported no cytotoxicity. Paolino et al. (2013) 
described other adamantyl-functionalized forming host-
guest supramolecular complexes with CDs. Modifying 
the dendrimer surface significantly reduced the toxicity of 
polypropylene imine dendrimers and made them suitable 
for DDS. A novel class of fourth- and fifth-generation hy-
brid dendrimers with adamantyl moieties (hydrophobic 
guest groups) and maltose or maltotriose units (biocom-
patible groups) on their surfaces have been synthesized. 
The number of adamantyl radicals on the surface of the 
glycodendrimer determined the host-guest interaction in 
the generated supramolecular complexes. Other uses for 
adamantane-containing dendrons involve functioning as 
carriers and scaffolding for the multi-presentation of bioac-
tive peptides (Bevilacqua et al. 2021; de Souza et al. 2022).

Conclusion and future 
perspectives

Adamantane is a primary structural unit for creating var-
ious DDS such as its polymers and nanoparticles (lipo-
somes and dendrimers).

Adamantane-based polymers can create materials with 
controllable mechanical, physicochemical, and biological 
properties. These polymers are utilized as drug delivery 
matrices to improve bioavailability, decrease adverse effects, 
and enable controlled drug release. In cancer diseases, ada-

mantane-based polymer drug carriers provide more effec-
tive drug distribution to afflicted tissues while minimizing 
the toxicity of the pharmaceuticals to healthy tissues and 
organs. Furthermore, for central nervous system illnesses 
such as Alzheimer’s and Parkinson’s, adamantane polymers 
can carry medications across the blood-brain barrier.

Adamantane nanoparticles can potentially increase 
the bioavailability and efficacy of API. They can also be 
used as molecular markers to help visualize and diag-
nose pathological conditions. Because of their tiny size, 
nanoparticles may pass through many barriers in the 
body, such as the blood-brain barrier or the cell mem-
brane, making them appropriate for use as DDS in the 
treatment of various disorders. Adamantane nanopar-
ticles can also boost medication resistance to enzymat-
ic breakdown and minimize toxicity. ACLs are a form 
of lipid drug nanocarriers. One of the primary uses of 
ACLs is drug delivery to the brain, making them helpful 
in treating neurological diseases. Another application 
area is cancer diseases, where these carriers increase the 
efficacy of treatment by delivering drugs directly to the 
afflicted cells and tissues, resulting in lower drug dos-
ages. Adamantane strengthens their structure, making 
them more resistant to deterioration and effective. ACLs 
can be employed as direct delivery systems to cancer 
cells or to treat infections and illnesses of the nervous 
system, thus providing better-targeted therapy.

Adamantane-containing DDS are a new generation of 
drug carriers that employ adamantane as a component 
to enhance the biopharmaceutical characteristics of API. 
These systems are biocompatible and may be used to serve 
a variety of medical purposes, including drug delivery to 
particular organs and tissues. Although they have the po-
tential to be used in therapeutic treatment, they are cur-
rently being researched and developed. Despite their po-
tential advantages, ACL and dendrimers are not yet widely 
used in medical practice. More study is needed to establish 
the optimum manner to utilize them as well as to validate 
their safety and efficacy in treating various disorders.
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and biological evaluation of new mannose derived immunomod-
ulating adamantyltripeptides. Croatia Chemica Acta 84: 233–244. 
https://doi.org/10.5562/cca1827
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Šekutor M, Štimac A, Mlinarić-Majerski K, Frkanec R (2014) Synthe-
ses and characterization of liposome incorporated adamantyl ami-
noguanidines. Organic & Biomolecular Chemistry 12: 6005–6013. 
https://doi.org/10.1039/C4OB00592A

Sharma AR, Lee YH, Bat-Ulzii A, Bhattacharya M, Chakraborty C, Lee 
SS (2022) Recent advances of metal-based nanoparticles in nucleic 
acid delivery for therapeutic applications. Journal of Nanobiotech-
nology 20(1): 1–21. https://doi.org/10.1186/s12951-022-01650-z

Shchelkanov MIu, Shibnev VA, Finogenova IT, Fediakina TM, Garaev 
TM, Markova NV, Kirillov IM (2014) The antiviral activity of the ad-
amantane derivatives against the influenza virus A (H1N1) pdm2009 
model in vivo. Voprosy Virusologii 59(2): 37–40.

Spilovska K, Korabecny J, Horova A, Musilek K, Nepovimova E, Drti-
nova L, Gazova Z, Siposova K, Dolezal R, Jun D, Kuca K (2015) 
Design, synthesis and in vitro testing of 7-methoxytacrine-amanta-
dine analogues: A novel cholinesterase inhibitors for the treatment 
of Alzheimer’s disease. Medicinal Chemistry Research 24(6): 2645–
2655. https://doi.org/10.1007/s00044-015-1316-x

Spilovska K, Korabecny J, Kral J, Horova A, Musilek K, Soukup O, 
Drtinova L, Gazova Z, Siposova K, Kuca K (2013) 7-Methoxyta-
crine-adamantylamine heterodimers as cholinesterase inhibitors in 
Alzheimer’s disease treatment – synthesis, biological evaluation and 

molecular modeling studies. Molecules 18(2): 2397–2418. https://
doi.org/10.3390/molecules18022397
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