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Abstract
Invasive fungal infections cause serious illness and death worldwide. Long-term therapeutic and preventative use of antifungal drugs 
in high-risk patients has caused resistance. Triazole antifungals are widely used to prevent and treat fungal infections, and therapeu-
tic drug monitoring has been suggested to improve outcomes, reduce toxicity, and prevent drug resistance. Common methods used 
for monitoring triazole antifungal drugs in biological matrices such as blood, serum, and plasma include bioassay and instrumenta-
tion methods, especially liquid chromatography. Sample preparation is needed to remove interference from liquid chromatography 
for reliable results. This paper evaluates the use of liquid chromatography to analyze triazole antifungal agents. We provided various 
chromatographic techniques combined with different detector types to analyze triazole antifungal drugs in biological matrices. We 
also compared chromatography systems with different sample preparation methods in order to select the most suitable analytical 
method for bioanalysis.
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Introduction

Millions of people die every year as a consequence of in-
vasive fungal diseases. Patients with impaired immune 
systems frequently develop invasive fungal infections, 
such as those undergoing chemotherapy, organ trans-
plantation, or other diseases that may cause an existing 

immune system deficiency (Pianalto and Alspaugh 2016). 
Aspergillosis, candidiasis, and invasive mucormycosis are 
all quite common; available data show yearly incidences 
of over 300,000, 750,000, and 10,000 cases, respectively. 
(Bongomin et al. 2017). Invasive fungal disease epidemi-
ology leads to mortality rates from 30 to 95% for inva-
sive aspergillosis and 46 to 75% for candidiasis (Brown 

Copyright Gunawan U et al. This is an open access article distributed under the terms of the Creative Commons Attribution License 
(CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

Pharmacia 70(4): 1265–1281
DOI 10.3897/pharmacia.70.e111511

Review Article

mailto:sophi.damayanti@itb.ac.id
https://doi.org/10.3897/pharmacia.70.e111511


Gunawan U et al.: Separation and analysis of triazole antifungal1266

et al. 2012). Fungal infections may be categorized into 
two types: superficial and invasive. A superficial fungal 
infection affects only the body’s outermost layer, but an 
invasive fungal infection spreads throughout the body. 
Invasive fungal infections represent a substantial and 
widespread clinical concern; in high-risk groups like im-
munocompromised people or cancer patients undergo-
ing chemotherapy, they have become a significant source 
of illness and death. Candida spp., Aspergillus spp., and 
Cryptococcus spp. are the three most common organisms 
that cause invasive fungal infections (Miceli et al. 2011). 
In clinical applications, serious fungal infections con-
tinue to be a big problem. In the past few years, notable 
advancements have occurred in the understanding and 
management of invasive fungal infections that involve 
aspects such as prognosis, diagnosis, and therapy. Fungal 
infections are becoming more common as the number of 
critically ill and immunocompromised people increases 
(Eades and Armstrong-James 2019).

Aspergillus species are potentially lethal illnesses for 
patients, particularly those with high-risk conditions, 
including stomach cancer, chronic obstructive pulmo-
nary disease (COPD), neutropenia, hematopoietic stem 
cell, and organ transplantation, cystic fibrosis, immuno-
deficiency, and corticosteroid usage (Miceli et al. 2017; 
Fishman and Grossi 2020; Poli et al. 2020). The Infectious 
Diseases Society of America (IDSA) practice guidelines 
for the diagnosis and management of aspergillosis rec-
ommend triazole antifungals (voriconazole, itraconazole, 
posaconazole), amphotericin B and its liposomes, in ad-
dition to echinocandins (micafungin, caspofungin) as 
therapy and preventive strategy for invasive aspergillosis. 
It is recommended that patients receiving azole antifungal 
therapy undergo therapeutic drug monitoring (TDM) to 
prevent therapy failure caused by suboptimal doses and to 
reduce the resulting toxicity (Patterson et al. 2016). One 
of the primary causes of death among fungal illnesses is 
invasive candidiasis, with fifteen species causing illness in 
humans. Only five fungal contribute to 90% of invasive 
infections: C. albicans, C. glabrata, C. krusei, C. tropicalis, 
and C. parapsilosis. Because each of these pathogens has 
a distinct virulence, resistance, and epidemiological po-
tential, invasive candidiasis is widely used to describe 
infections caused by these five pathogens. Triazole anti-
fungals, echinocandins, flucytosine, amphotericin B, and 
related liposomes are recommended for invasive candidi-
asis treatment by IDSA: clinical practice guideline for the 
management of candidiasis (Pappas et al. 2015). Mucor-
mycosis refers to an infection produced by a fungus from 
the order Mucorales. Rhizopus spp., Mucor spp., Rhizomu-
cor spp, Lichtheimia spp., Cunninghamella spp., Apoph-
ysomyces spp., and Saksenaea spp. are frequently identified 
as the primary pathogens associated with mucormycosis 
(Roden et al. 2005; Sridhara et al. 2006; Skiada et al. 2011). 
Patients with mucormycosis infections require immedi-
ate treatment because the infection spreads rapidly and is 
dangerous to health. Delays in the identification and treat-
ment of invasive mucormycosis are frequently correlated 

with increased mortality rates (Chamilos et al. 2008; 
Vaughan et al. 2018). As a systemic antifungal therapy for 
invasive mucormycosis, the European Confederation of 
Medical Mycology (ECMC) recommends amphotericin 
B and its liposomes, azole antifungals (posaconazole and 
isavuconazole). The recommends amphotericin B and its 
liposomes, and triazole antifungals (posaconazole and is-
avuconazole) (Cornely et al. 2019). Patients with HIV in-
fection with a T lymphocyte count of fewer than 200 cells 
per L or other immunological abnormalities are suscepti-
ble to Cryptococcosis, presenting mostly as meningoen-
cephalitis (Setianingrum et al. 2019). According to WHO 
guidelines, the recommended treatment approach during 
the induction phase involves the administration of am-
photericin B and flucytosine, followed by fluconazole. The 
alternative treatment options encompass amphotericin B 
in combination with fluconazole or fluconazole combined 
with flucytosine. During the consolidation phase, it is sug-
gested to provide fluconazole as the preferred treatment, 
similarly, in the maintenance phase or secondary prophy-
laxis infections. To ensure the effectiveness of treatment, 
reduce the risk of toxicity, and avoid the development 
of drug resistance, triazole antifungal drugs, commonly 
used to prevent and treat invasive fungal infections, must 
be monitored. Triazole antifungal concentration is often 
measured using two primary methodological methods: 
bioassays and instrumental approaches. Current meth-
ods for analyzing triazole antifungals, as well as the ad-
vantages and disadvantages of the method are shown in 
Table 1. Liquid chromatography methods have emerged 
as commonly used methods for quantifying antifungal 
compounds in biological samples. These methods utilize 
spectrophotometry as well as mass spectrometry as de-
tectors. With the widespread use of methods, it is neces-
sary to comprehend the selection of the chromatographic 
system to obtain an analytical method that conforms to 
established standards. This paper aims to review the use 
of liquid chromatography to analyze triazole antifungal 
agents using various detection methods. Various sample 
preparation methods were also compared to offer guid-
ance on selecting the most suitable analytical method for 
the bioanalysis of triazole antifungal drugs.

Triazole antifungal drugs

Currently, four different antifungal agents are employed 
in managing systemic invasive fungal infections, includ-
ing azoles, polyenes, echinocandins, and pyrimidine an-
alogues (Carmona and Limper 2017). Four existing anti-
fungal groups (Fig. 1) have different targets for fungi. The 
first class, known as polyene derivatives, such as ampho-
tericin B, have the ability to interact with ergosterol, an 
essential part of fungal cell membranes. Amphotericin is 
fungicidal against Candida sp., A. fumigatus, and A. fla-
vus (Meletiadis et al. 2007; Kumar et al. 2018). The sec-
ond group is the first-generation and second-generation 
triazole antifungals, which work by interfering with the 
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Table 1. Current method of triazole antifungals bioanalysis.

Method Advantages Drawbacks
Bioassay Easy to perform, the utilization of costly instruments 

is not necessary. The total antifungal activity of a drug 
can be determined.

Unable to quantify the individual concentrations of the drug’s constituents and 
metabolites. Necessitates a substantial time for analysis. Poor solubility of some 

triazole agents in water and limited diffusion in the aqueous environment.
Spectrophotometry Methods are simple to implement and take less time, 

provide greater selectivity than the bioassay technique.
It may be necessary to perform derivatization procedures prior to the detection 

process. Endogenous compounds may interfere with the analysis results. Not 
applicable for simultaneous analysis.

Gas chromatography Short analysis time, can be used for simultaneous 
analysis.

The detectors are usually destructive. Need derivatization for improving the 
volatility. Limited choice because the methods for measuring antifungal agents 

have not been extensively developed.
High-performance liquid 
chromatography

Sensitivity is higher than in spectrophotometry. 
Possible to do simultaneous analysis. The detectors 

used are usually not destructive; therefore, the analytes 
may be collected for further analysis. Wide choice of 

detectors.

Substantial sample preparation is required, susceptibility to matrix effects. It is 
generally necessary to employ extended runtimes to achieve a selected analysis 

approach.

Ultra-high-performance 
liquid chromatography

Improved chromatographic efficiency compared to the 
HPLC method. Shorter analysis time. Less susceptible 

to matrix effect.

Smaller particles in the column necessitate more laborious sample processing to 
prevent blockage. High cost of the instrument

ergosterol biosynthesis at the lanosterol demethylation 
stage (Geißel et al. 2018). Echinocandins, which belong to 
the third class of antifungal agents, work by inhibiting the 
production of β(1,3)-D-glucan in the cell walls of fungi. 
Echinocandins have fungicidal activity against Candida 
spp. and fungistatic activity against Aspergillus spp. (Patil 

and Majumdar 2017). Flucytosine, the fourth group in-
teracting with the fungal cell nucleus, affects protein and 
DNA biosynthesis (Carmona and Limper 2017). Excessive 
use of antifungal compounds can increase the resistance 
of opportunistic pathogens (Revie et al. 2018).

The amount of nitrogen atoms in the ring is relevant for 
classifying azole antifungals. If the ring attaches to two ni-
trogen atoms, it is an imidazole group. Imidazole antifun-
gals have no activity against Aspergillus species, so they 
are generally used to treat mucosal infections (Peyton et 
al. 2015). The triazole group has a five-ring structure that 
binds three nitrogen and two carbon atoms. The triazole 
core is prevalent in numerous compounds exhibiting pro-
nounced antifungal, antimicrobial, and antiviral activi-
ties (Koval et al. 2022). It is currently a concern that the 
number of invasive fungus species resistant to antifungal 
agents is increasing. Antifungal triazoles with one or more 
1,2,4-triazole rings have proved effective against various 
fungal species. Triazole antifungals work by inhibiting the 
CYP450 enzyme, which is involved in the production of 
ergosterol (Strushkevich et al. 2010). Ergosterol is required 
for the formation of fungal cell membranes. Treatment of 
fungal infections with the triazole group will result in the 
inhibition of ergosterol and increasing methylated ste-
rol concentration, such as 4,14-dimethylzymosterol and 
24-methylenedihydrolanosterol (Fig. 2). Accumulation of 
methylsterol in the membranes of fungal cells will result 
in cell death or growth inhibition. The triazole antifungals 
have different affinities for the 14-demethylase enzyme, 
resulting in different pharmacological effects and effects 
(Skiada et al. 2011; Falci and Pasqualotto 2013). Itracon-
azole and fluconazole are some of the first generation tri-
azole antifungals. A decade later, the second-generation 
triazole antifungals, a decade later the second generation 
triazole antifungals including voriconazole, posaconazole, 
and isavuconazole were designed to overcome the short-
comings of the first-generation triazole antifungals (Pey-
ton et al. 2015). Triazole antifungals are developing rap-
idly and are becoming one of the main choices in various 
local and systemic fungal infections due to the extensive 
range of activities, good pharmacokinetic parameters, and 

Figure 1. The chemical formula of some antifungal agents: tri-
azoles (A), polyenes (B), echinocandins (C), and pyrimidine an-
alogues (D).
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lower side effects than amphotericin B. The azole antifun-
gals, especially triazoles, showed good efficacy in various 
fungal species with a better safety profile than amphoter-
icin B and imidazole groups. Various synthetic routes for 
azole antifungals also provide an economic impact for 
the treatment of fungi with this class, and the discovery 
of novel fungus species has prompted the growth of the 
antifungal drug market in recent years (Wang et al. 2009; 
Montagna et al. 2013).

Therapeutic drug monitoring of 
triazole antifungal

Therapeutic drug monitoring (TDM) is a multidisci-
plinary approach predominantly used to prevent or re-
duce adverse drug effects in patients. TDM has been used 
widely for narrow therapeutic index drugs (Caro et al. 
2020). TDM leads to enhanced patient treatment efficacy 
and safety. A relationship between drug levels (pharmaco-
kinetics) and pharmacological activity (pharmacodynam-
ics) must be implemented for TDM to be effective, and 
the efficacy or toxicity must be well-defined (Kuhlin et al. 
2019). The following are the primary indications for using 
TDM: abnormal response to therapy, unusual toxicity, ab-
normalities in hepatic or renal function and impaired me-
tabolism (such as pregnant women, kids, the elderly, and 
the obese), narrow therapeutic range drug for treatment, 

assessment of an insufficient relationship between dose 
and clinical response; inability to monitor the patient’s 
progress by physical examination or standard laborato-
ry analysis, inter-and intra-individual variability of me-
tabolization (Esteve-Romero et al. 2016; Tuzimski and 
Petruczynik 2020). Antifungal drugs need to meet several 
criteria in TDM for the results to be clinically useful. First, 
there must be sensitive analytical methods in the labora-
tory that can report the results in a short time so that it 
helps clinical decision-making. Second, To maximize the 
effectiveness of its treatment and minimize the risk of tox-
icity, the antifungal drug must have a therapeutic range. 
Finally, the compound must not have significant inter-pa-
tient variability to not cause harm. Triazole antifungal 
agents have been employed in TDM for the treatment of 
invasive fungal infections and fulfill established criteria 
(David et al. 2009; Ashbee et al. 2014). TDM approaches 
tend to depend significantly on accurate and objective an-
alytical techniques, especially for low sample concentra-
tions. In addition, the selection of an effective analytical 
method requires automation, high-throughput instru-
mentation, robustness, and affordable costs. For many 
years, immunoassay was implemented for TDM; however, 
immunoassay lacks specificity in analyte recognition due 
to interference from related substances, metabolites, and 
matrices. These days, the majority of laboratories employ 
liquid chromatography in conjunction with ultravio-
let (UV), fluorescence (FLD), and mass (MS) detectors, 
which are highly accurate, sensitive, and precise analytical 
methods for TDM. When combined with selective de-
tection techniques, liquid chromatography has excellent 
analytical performance for separating analytes from other 
compounds and metabolites present in biological matri-
ces. Selecting the proper sample preparation method, col-
umn type, internal standard, and detection conditions is 
essential for achieving accurate drug measurements and 
minimizing matrices or metabolite interference (Tuzimski 
and Petruczynik 2020).

Analytical method

The analytical method consists of three main steps, in-
cluding sampling, sample preparation, and sample mea-
surement. Sample preparation aims to reduce interference 
from the matrices that can interfere with the analysis 
process, enrich the sample, transform the analyte into an 
appropriate form, and improve measurement reproduc-
ibility (Hu et al. 2013). Triazole antifungals can be ana-
lyzed by various methods, such as titrimetric methods and 
instrument methods, such as spectrophotometry, electro-
chemistry, and chromatography. Titrimetric and spectro-
photometric techniques cannot be used to analyze triazole 
antifungals in complex matrices, such as biological ma-
trices, due to selectivity limitations (Ekiert et al. 2010). 
Nowadays, High-Performance Liquid Chromatography 
(HPLC) and Ultra Performance Liquid Chromatogra-
phy (UPLC) are the most commonly used and developed 

Figure 2. Antifungal agents inhibitory activities in ergoster-
ol biosynthetic pathway (TERB: terbinafine, FLU: fluconazole, 
ITRA: itraconazole, VOR: voriconazole). Reuse with permission 
from (Ghannoum and Rice 1999).
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analytical techniques for determining triazole antifungal 
concentration in biological matrices, where plasma and 
serum samples were used in most documented protocols.

HPLC-Ultraviolet detector

Despite the fact that liquid chromatography with a mass 
detector (LC-MS) is the preferred method for quantifying 
triazole antifungals in biological matrices, its limitations, 
such as susceptibility to matrix effects, the need for trained 
operators, and high operating costs, imply that not all lab-
oratories working on drug analysis have LC-MS technol-
ogy. In contrast to LC-MS, the widespread use of HPLC 
with a UV detector in clinical labs does not require the 
employment of expensive equipment or highly educated 
employees. HPLC-UV and photodiode array (PDA) are 
still essential as a simple, affordable, and conveniently ac-
cessible analytical method for measuring triazole antifun-
gal in biological matrices (Zarad et al. 2021). Due to the 
capability of the PDA detector to collect the whole spec-
trum at each time point, the chromatogram is more infor-
mative and selective than those with only one wavelength. 
UV spectra are commonly utilized in combination with 
retention data to correctly identify compounds in biologi-
cal samples where their identities are unknown or suspect-
ed. HPLC-UV and PDA have several benefits, including 
high specificity, sensitivity, speed, and durability. The ob-
tained information, which contains the retention time and 
absorption spectra of the analyte substances provides ex-
cellent identification power that is inexpensive and widely 
available to analytical laboratories (Ashbee et al. 2014). To 
enhance the sensitivity and selectivity of the HPLC-UV 
method, sample preparation was routinely optimized to 
achieve excellent analyte recoveries and minimize matri-
ces interferences (Nannetti et al. 2018). Choudary utilized 
HPLC-UV to simultaneously determine triazole antifun-
gals (voriconazole, itraconazole, and posaconazole) in hu-
man serum (Choudhary et al. 2021). The method required 
uncomplicated sample preparation by protein precipi-
tation with acetonitrile, followed by centrifugation, and 
then the sample was analyzed in the HPLC system. The si-
multaneous analysis was conducted using the C18 column, 
elution using isocratic mode, a mobile phase composed 
of acetonitrile and water, and detection was achieved at 
266 nm for posaconazole, itraconazole, and it’s metabolite, 
255 nm for voriconazole. The linearity result showed that 
the correlation coefficient of itraconazole, voriconazole, 
and posaconazole >0.999, limit of detection (LoD) of 
itraconazole and voriconazole were 0.25 mg/L, posacon-
azole was 0.125 mg/L. Limit of quantification (LoQ) was 
0.5 mg/L for itraconazole and voriconazole, 0.25 mg/mL 
for posaconazole. Precision and accuracy were within 
acceptable limits, with a 100 percent average percentage 
recovery, and there were no interferences from the endog-
enous matrices or other antimicrobial agents observed in 
the chromatogram. Simultaneous analysis of voriconazole, 
itraconazole, posaconazole, and its metabolite had been 

developed by Lopez using HPLC with a PDA detector 
(Gomez-Lopez et al. 2018). Identification of the sample 
was performed at three distinct wavelengths (255, 266, 
and 311 nm). Simple extraction by protein precipitation 
using acetonitrile, followed by centrifugation, was carried 
out to eliminate matrices interferences. For all substances 
tested, the assay demonstrated a linearity range from 0.25 
to 16 mg/L. The method was accurate and precise, both in-
tra and inter-day precision. Further applications of HPLC 
with UV and DAD detectors for the analysis of triazole 
antifungal in biological matrices are shown in Table 2.

HPLC-Fluorescence detector

HPLC with a fluorescence detector (FLD) provided some 
advantages compared to UV detectors. It’s more selective 
and sensitive than UV detectors, so HPLC-FLD is applica-
ble for analyzing targeted analytes in biological matrices. 
When analyzing biological samples with low analyte con-
centrations, the sensitivity of HPLC-FLD is crucial since 
it is around 30 times greater than UV detectors (Tuzimski 
and Petruczynik 2020). Triazole antifungal drugs were in-
frequently studied using HPLC with fluorescence detec-
tion as opposed to UV or MS detectors. An HPLC-FLD 
method for the determination of posaconazole concen-
trations in human plasma and serum was developed and 
validated by Tang (2017). The samples were prepared by 
protein precipitation in methanol, and the analysis was 
performed on a C18 column using a mobile phase of am-
monium acetate, water, and acetonitrile for 8 minutes run 
time. The excitation wavelength for detection was 245 nm, 
while the emission wavelength was 380 nm. The technique 
has a linear response from 0.1 to 10 g/mL, with LOD and 
LOQ 0.04 and 0.01 µg/mL. Pharmacokinetic and TDM 
study of free and total voriconazole using HPLC-FLD was 
accomplished using isocratic system elution HPLC with 
acetonitrile potassium dihydrogen phosphate buffer was 
used for sample separation (Resztak et al. 2020). One-step 
sample preparation by precipitating proteins was per-
formed for the extraction of voriconazole from the plasma. 
A linear standard calibration curve was obtained for free 
VCZ across the concentration range of 0.05–10.0 g/mL 
(Fig. 2), while a linear calibration curve was obtained for 
total VCZ over the concentration range of 0.1–10.0 g/mL. 
Table 3 displays various uses of HPLC-FLD in the analysis 
of triazole antifungals in biological matrices.

HPLC-mass detector

Triazole antifungal drug detection in biological matrices is 
most commonly performed using liquid chromatography 
with a mass detector (MS). Compared to tandem mass 
spectrometry, a single MS lacks sensitivity and selectivity. 
To optimize the therapeutic effectiveness of TDM, accu-
rate, precise, and rapid quantitative methods are necessary. 
The approach of LC combined with tandem MS enables the 
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Table 2. Analysis of triazole antifungal drugs using HPLC-UV/PDA. NA = not available.

No Analyte Matrices Sample Preparation HPLC 
system

Stationary 
Phase

Mobile Phase LOD/LLOD LOQ/LLOQ References

1 Voriconazole, 
posaconazole, 
itraconazole

Human serum Protein precipitation 
using acetonitrile, and 

centrifugation

HPLC-PDA, 
detection at 

255&262 nm

C18 (250 
× 4.6 mm, 

5 µm)

Isocratic mode, acetonitrile:water 
(70:30), flow rate 1.0 mL/min

0.25 ug/mL for 
voriconazole 

and 
Itraconazole, 

0.125 µg/mL for 
posaconazole

0.5 ug/mL for 
voriconazole 

and 
Itraconazole, 
0.25 µg/L for 
posaconazole

(Choudhary 
et al. 2021)

2 Voriconazole Human serum Protein precipitation 
using acetonitrile, 

vortex, and 
centrifugation

HPLC-UV, 
detection at 

255 nm

C18 (250 
× 4 mm, 

5 µm)

Isocratic mode, acetonitrile:water 
(60:40), flow rate 0.8 mL/min

0.125 µg/mL 0.25 µg/mL (Blanco-
Dorado et 
al. 2021)

3 Voriconazole Human 
plasma

Protein precipitation 
using methanol, vortex, 

and centrifugation.

HPLC-UV, 
detection at 

256 nm

C18 (250 
× 4.6 mm, 

3.5 µm)

Gradient mode, 0.05 M 
ammonium acetate, acetonitrile, 

and methanol, flow rate 1 mL/min

0.042 µg/mL 0.125 µg/mL (Yousefian 
et al. 2021)

4 Fluconazole Human serum SPE protein-coated 
(PC) µBondapak CN 

silica column (PC-µB-
CN-column) 

HPLC-UV, 
detection at 

260 nm

C18 (150 
× 4 mm, 

5 µm)

Isocratic mode, acetonitrile:water 
(20:80), flow rate 1 mL/min

0.05 µg/mL 0.18 µg/mL (Zarad et al. 
2021)

5 Fluconazole Cerebrospinal 
fluid

Dispersive liquid-liquid 
microextraction using 
chloroform, isopropyl 
alcohol, and phosphate 

buffer pH 7.3

HPLC-PDA, 
detection at 

210 nm

C18 (100 
× 4.6 mm, 

2.7 µm)

Isocratic mode, ethanol:water 
(15:85), flow rate 0.8 mL/min

NA 0.25 µg/mL (Moreira et 
al. 2020)

6 Voriconazole, 
fluconazole

Rat plasma SPE using metal organic 
framework

HPLC-UV, 
detection at 

210 nm

C18 Isocratic mode, methanol: water 
(60:40), flow rate 1.0 mL/min

0,03 µg/mL for 
voriconazole 

and 0.02 µg/mL 
for fluconazole

0,05 µg/mL for 
voriconazole 

and 0.04 µg/mL 
for fluconazole 

(Bashir et al. 
2020)

7 Isavuconazole Human 
plasma

Protein precipitation 
using methanol, vortex, 

and centrifugation.

HPLC-PDA, 
detection at 

259 nm

C18 (150 
× 4.6 mm, 

3.5 µm) 

Gradient mode, acetonitrile, 
phosphate buffer pH 4.5, flow rate 

1 mL/min

NA 0,4 µg/mL (Cozzi et al. 
2018)

8 Voriconazole, 
itraconazole, 
and 
posaconazole

Human serum Protein precipitation 
using acetonitrile

HPLC-PDA, 
detection at 

255, 266, and 
311 nm)

C18 (150 
× 4.6 mm, 

5 µm) 

Gradient mode, acetonitrile and 
water, flow rate 1 mL/min

0.125 µg/L for 
voriconazole, 
itraconazole, 

and 
posaconazole

0.25 µg/L for 
voriconazole, 
itraconazole, 

and 
posaconazole

(Gomez-
Lopez et al. 

2018)

9 Isavuconazole Human 
plasma

Protein precipitation 
using acetonitrile, 
followed by SPE

HPLC-PDA, 
detection at 

285 nm

C18 (150 
× 4.6 mm, 

3.5 µm)

Isocratic mode, ammonium 
acetate buffer pH 8.0 and 

acetonitrile (45:55), flow rate was 
1.0 mL/min

0.012 µg/mL 0.025 µg/mL (Nannetti et 
al. 2018)

10 Voriconazole Human 
Serum

Protein precipitation 
using acetonitrile, 

vortex, and 
centrifugation

HPLC-PDA, 
detection at 

262 nm

C18 (125 
× 4.6 mm, 

5 µm)

Isocratic mode, acetonitrile:water 
(40:60), flow rate 0.4 mL/min

0.125 µg/mL 0.25 µg/mL (Badiee et 
al. 2017)

11 Terconazole, 
voriconazole, 
posaconazole, 
ravucunazole, 
itraconazole

Human 
plasma and 

urine

Protein precipitation 
using trichloroacetic 

acid, followed by 
microextraction-packed 

sorbent

HPLC-PDA, 
detection at 

210 nm

C18 (250 
× 4.6 mm, 

5 µm)

Gradient mode, phosphate buffer 
pH 2.5 and acetonitrile, flow rate 

at 1.0 mL/min

0.007 µg/L for 
ravuconazole, 
0.07 µg/L for 

terconazole, and 
0.017 µg/L for 
voriconazole, 
posaconazole, 

and itraconazole

0.02 µg/L for 
ravuconazole, 
0.2 µg/L for 

terconazole, and 
0.05 µg/L for 
voriconazole, 
posaconazole, 

and itraconazole

(Campestre 
et al. 2017)

12 Voriconazole Human 
plasma

Protein precipitation 
using perchloric 
acid, vortex, and 
centrifugation.

HPLC-PDA, 
detection at 

254 nm

C18 (100 
× 2.0 mm, 

2.2 µm) 

Isocratic mode, propylene 
carbonate: (70% NaH2PO4 pH = 
3.0) + 30% EtOH) (10:90), flow 

rate of 0.3 mL/min

0.05 µg/mL 0.5 µg/mL (Dogan and 
Basci 2017)

13 Terconazole, 
voriconazole, 
posaconazole, 
ravucunazole, 
itraconazole

Human 
plasma

Fabric Phase Sorptive 
Extraction

HPLC-PDA, 
detection at 

210 nm

C18 (250 
× 4.6 mm, 

5 µm)

Gradient mode, phosphate buffer 
pH 2.5 and acetonitrile, flow rate 

at 1.0 mL/min

0.03 µg/mL 0.1 µg/mL (Locatelli et 
al. 2017)

14 Voriconazole Human 
plasma

Protein precipitation 
using perchloric 
acid, vortex, and 
centrifugation.

HPLC-UV, 
detection at 

255 nm

C18 (250 
× 4.6 mm, 

5 µm)

Isocratic mode, acetonitrile:water 
(7:3), flow rate 1 mL/min

NA 0,2 µg/mL (Chawla et 
al. 2016)

15 Voriconazole, 
posaconazole

Human 
plasma

Protein precipitation 
using acetonitrile, 

vortex, and 
centrifugation.

HPLC-UV, 
detection at 

250 nm

C18 (250 
× 4.6 mm, 

5 µm)

Isocratic mode, 
water:methanol:acetonitrile 

(35:15:50), flow rate 1.0 mL/min 

0.05 µg/mL for 
voriconazole, 
0.02 µg/mLfor 
posaconazole

0.1 µg/mL for 
voriconazole, 
0.03 µg/mLfor 
posaconazole

(Francia 
2015)

16 Posaconazole Rat plasma LLE using diethyl ether 
in sodium hydroxide 

HPLC PDA, 
detection at 

220 nm

C18 (250 × 
4.6 mm, 5 

µm)

Gradien mode, acetonitrile 
and potassium dihydrogen 

orthophosphate, flow rate 1.5 
mL/min

NA 0.05 µg/mL (Khalil et al. 
2015)
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No Analyte Matrices Sample Preparation HPLC 
system

Stationary 
Phase

Mobile Phase LOD/LLOD LOQ/LLOQ References

17 Fluconazole Human 
plasma

Protein precipitation 
using acetonitrile and 
NaCl, centrifugation

HPLC-UV, 
detection at 

261 nm

C8 (125 × 
4.0 mm, 
5 µm)

Isocratic mode, 
acetonitrile:potassium dihydrogen 
phosphate buffer (15:85), pH 3.0, 

flow rate of 1.5 mL/min 

0.02 µg/mL 0.061 µg/mL (Safaei et al. 
2015)

18 Itraconazole Human 
plasma

Protein precipitation 
using acetonitrile, 

vortex, and 
centrifugation

HPLC-UV, 
detection at 

258 nm

CN (150 
× 3.9 mm, 

5 µm)

Isocratic mode, sodium dodecyl 
sulfate, 1-propanol, triethylamine 
in o-phosphoric acid, flow rate 2.0 

mL/min

5.4 µg/mL 16.4 µg/mL (Rizk et al. 
2014)

19 Voriconazole Human serum 
and plasma

Protein precipitation 
using methanol, vortex, 

and centrifugation

HPLC-UV, 
detection at 

256 nm

C18 (250 
× 4.6 mm, 

5 µm)

Isocratic mode, ammonium 
acetate:acetonitrile:methanol 

(40:20:40), flow rate 1.0 mL/min

0.06 µg/mL 0.1 µg/mL (Tang 2013)

20 Voriconazole, 
posaconazole, 
and 
itraconazole

Human 
plasma

Protein precipitation 
using perchloric 

acid and methanol, 
centrifugation.

HPLC-UV, 
detection at 

262 nm

C6 (150 × 
4.6 mm, 
5 µm) 

Gradient mode, phosphate buffer 
pH 3.5, acetonitrile, and water, 

flow rate 1.0 mL/min 

NA 0.05 mg/L for 
voriconazole, 
posaconazole, 

and itraconazole

(Zhang et al. 
2013)

21 Fluconazole Human 
plasma

Protein precipitation 
using sodium hydroxide 
and dichloromethane, 

vortex, and 
centrifugation.

HPLC-UV, 
detection at 

260 nm

C18 (250 
× 4.6 mm, 

5 µm) 

Isocratic mode, sodium acetate 
buffer:acetonitrile (80:20), flow-

rate 1.2 mL/min

NA 0.125 µg/mL (Liew et al. 
2012)

22 Voriconazole Human 
plasma

Protein precipitation 
using acetonitrile, 

vortex, and 
centrifugation.

HPLC-UV, 
detection at 

255 nm

C18 (100 
× 4.6 mm, 

2.3 µm) 

Isocratic mode, 
acetonirile:methanol:phosphate 
buffer (25:10:65), flow rate 1.5 

mL/min

NA 0.1 µg/mL (Yamada et 
al. 2012)

23 Voriconazole Human serum SPE with acetonitrile/
methanol (90:10)

HPLC-PDA, 
detection at 

254 nm

C18 (75 × 
4.6 mm, 
3 µm)

Gradient mode, potassium 
dihydrogen phosphate, TEA, 

and an acetonitrile, flow rate 1.2 
mL/min

0.078 µg/L 0.25 µg/L (Zufía et al. 
2010)

24 Fluconazole Human 
plasma

Protein precipitation 
using sodium hydroxide 
and dichloromethane, 

vortex, and 
centrifugation.

HPLC-UV, 
detection at 

210 nm

CN (150 
× 6.0 mm, 

5 µm) 

Isocratic mode, water:acetonitrile 
(60:40), flow rate 0.5 mL/ min

0.2 µg/mL 0.4 µg/mL (Santos et 
al. 2010)

25 Voriconazole Human serum Protein precipitation 
using hexane and 
dichloromethane, 

centrifugation.

HPLC UV, 
detection at 

250 nm

C8 (250 × 
4.6 mm, 
5 µm) 

Isocratic mode, sodium 
potassium phosphate buffer 

pH 6.0, acetonitrile, and water 
(45:52.5:2.5), flow rate 0.8 mL/min

0.1 mg/L 0.2 mg/L (Steinmann 
et al. 2011)

26 Itraconazole Human 
plasma

Protein precipitation 
using zinc sulfate 
and acetonitrile, 
centrifugation.

HPLC UV, 
detection at 

263 nm

C18 (150 
× 4.6 mm, 

5 µm) 

Isocratic mode, methanol:water 
(75:25), flow rate 1.0 mL/min

NA 2 µg/mL (Shimoeda 
et al. 2010)

rapid and selective measurement of simultaneous triazole 
antifungal agents. The majority of the proposed method for 
chromatographic analysis of triazole antifungal medicines 
are used by MS detectors (Zheng and Wang 2019, Tuzimski 
and Petruczynik 2020). LC-MS/MS method for therapeu-
tic drug monitoring of voriconazole, itraconazole, and po-

saconazole was performed (Yoon et al. 2019). Validation of 
the method was carried out on the linearity, accuracy, pre-
cision, carryover, and matrices effects. It took 3.8 minutes 
to analyze each sample (Fig. 3). Some methods of LC-MS 
that have been used in the determination of triazole anti-
fungal in biological matrices are shown in Table 4.

Table 3. Analysis of triazole antifungal drugs using HPLC-FLD.

No Analyte Matrices Sample Preparation HPLC system Stationary 
Phase

Mobile Phase LOD/
LLOD

LOQ/
LLOQ

References

1 Voriconazole Human 
plasma

Protein precipitation using 
acetonitrile, centrifugation

HPLC-FLD, 
excitation at 254 nm, 
emission at 385 nm 

and 450 nm

C18 (125 × 4 
mm, 5 µm)

Isocratic mode, acetonitrile and 
10 mM potassium dihydrogen 
phosphate buffer (35:65), flow 

rate 1.2 mL/min

NA 0.1 µg/mL (Resztak et 
al. 2020)

2 Isavuconazole Human 
plasma

Protein precipitation using 
chromsystems reagent

HPLC-FLD, 
excitation at 261 nm, 
emission at 366 nm

C18 Isocratic mode, ChromSystem 
mobile phase, flow rate 1.0 

mL/min

NA 0.15 mg/L (Mueller et 
al. 2018)

3 Posaconazole Human 
plasma and 

serum

Protein precipitation using 
methanol, centrifugation

HPLC-FLD, 
excitation at 245 nm, 
emission at 380 nm

C18 (250 × 
4 mm, 5 µm)

Isocratic mode, ammonium 
acetate: water:acetonitrile:TFA 

(409:590:1, flow rate 1.1 mL/min

0.04 µg/mL 0.1 µg/mL (Tang 2017)

4 Itraconazole Human 
plasma

Protein precipitation using 
methanol, centrifugation

HPLC-FLD, 
excitation at 262 nm, 
emission at 365 nm

C18 (150 × 
4 mm, 5 µm)

Isocratic mode, phosphate buffer 
pH 6.1: acetonitrile (35:65), flow 

rate of 1 mL/min

NA NA (Kumar et al. 
2015)

5 Posaconazole, 
itraconazole

Human 
plasma and 

serum

protein precipitation 
using Tris and MTBE, 

centrifugation

HPLC-FLD, 
excitation at 260 nm, 
emission at 350 nm

C6 (100 × 
3.0 mm, 3 µm)

Gradient mode, formic acid, 
methanol, flow rate 0.7 mL/min

0.05 mg/L 0.3 µg mL (Buckner et 
al. 2011)
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Ultra-high-performance liquid 
chromatography
Recently, ultra-high-pressure liquid chromatography 
(UPLC) has become the preferred HPLC platform. In 
terms of analytical time, UPLC is excellent for rapid meth-
od development due to its shorter analysis times (Fig. 4) 
and fast column equilibration (Dong and Zhang 2014). 
UPLC outperforms traditional HPLC in terms of perfor-
mance (reduced system dispersion and dwell volumes) 
and is especially appealing for method development set-
tings that require fast run time and rapid responsiveness 
to changes in column/mobile-phase conditions. A 3-to-
10-fold time saving is commonly obtained using UPLC 
while keeping a high level of performance in resolution, 
sensitivity, and accuracy. Improvements in HPLC perfor-
mance have prompted both revolutionary and evolution-
ary changes in UPLC technology (Dong and Guillarme 
2013). UPLC with various detectors has been developed 
to simultaneously analyze triazole antifungals. The tri-
azole antifungals: fluconazole, itraconazole, voriconazole, 
posaconazole, and isavuconazole were all simultaneously 
determined in human plasma (Tanaka et al. 2022) using 
UPLC with MS/MS detector, SPE was used for sample 
preparation, C18 column was used for separation using 
gradient elution consist of formic acid, acetonitrile, am-
monium formate. The separation required six minute run 
time and provided excellent results with all validation cri-
teria, which fulfilled US-FDA bioanalytical method valida-

tion guidance. Because of its sensitivity and specificity, as 
well as its ease of sample preparation and fast analysis time, 
the UPLC-MS technique has proven to be superior to other 
analytical methods. Another analysis of triazole antifungal 
in biological matrices using UPLC is shown in Table 5.

Sample preparation method

Blood, plasma, and serum are the most often used matri-
ces for TDM. Recently, dried blood spots (DBS) and saliva 
have also been developed for TDM. Matrices such as cere-
brospinal fluid (CSF), inflammatory fluids, and particular 
cells and tissues are not typically employed for TDM but 
may be useful in some conditions. Each of the biological 
matrices has benefits and limitations in TDM, and the 
clinical interpretation of the data is highly dependent on 
the matrices (Wong et al. 2014). Complex matrices, such 
as biological fluids, such as serum and plasma, and tissues 
containing proteins, lipids, salts, and metabolites with 
equivalent properties to the target analyte. Due to the rapid 
degradation of column frits and stationary phases, which 
cannot be avoided, direct injection into a chromatograph-
ic system is inadvisable. Various pre-treatment and ex-
traction techniques may be implemented to overcome this 
problem based on the complexity of the matrices (Ramos 
2012). The sample preparation process will be determined 
by the type of sample matrices. Prior to analysis, at least 
protein and other interfering components should be sep-
arated from the sample during sample preparation so that 
they do not impact the result of sample analysis. The phys-
icochemical characteristics of the studied analyte and its 
metabolites will determine sample preparation techniques 
(Acquavia et al. 2021). Sample preparation is the method of 
separating target analyte from sample matrices with suit-
able form by physical, chemical, or biological properties 
before qualitative and or quantitative analysis. Before anal-
ysis, extraction and separation of target analytes, as well as 
the concentration of trace level chemicals, must be com-
pleted to remove matrices influence. The optimal sample 
preparation procedure for detecting an analyte in biologi-
cal matrices should achieve optimal recoveries., eliminate 
potentially interfering endogenous molecules, and be rap-
id, simple, and inexpensive (Xia et al. 2020). Protein pre-
cipitation, liquid–liquid extraction, solid-phase extraction, 
or a combination of two or more of these techniques that 
involve analytes extraction, clean-up, and concentration 
prior to chromatographic separation is commonly used to 
prepare biological samples (Zheng and Wang 2019).

Protein precipitation

Protein precipitation (PP) is the most basic and widely 
used procedure for preparing samples for biological ma-
trices. PP is most often induced by the addition of organic 
solvents to blood, plasma, or serum, which modifies their 
solvation in water. Using centrifugation, protein precipi-

Figure 3. Chromatograms of voriconazole standard (5.0 μg/
mL) in phosphate-buffered saline (A) and plasma of patients 
(B). Reuse with permission from (Resztak et al. 2020).
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Table 4. Analysis of triazole antifungal drugs using LC-MS.

No Analyte Matrices Sample Preparation HPLC system Stationary Phase Mobile Phase LOD/
LLOD

LOQ/LLOQ References

1 Voriconazole Human 
serum

Protein precipitation 
using methanol 
and acetonitrile, 
centrifugation

LC-MS/MS, 
triple quadrupole 

with +ESI

C18 (50 × 2.1 mm, 
1.6 µm)

Gradient mode, ammonium 
acetate in formic acid solution, 
acetonitrile, flow rate 0.6 mL/

min

NA 0.5 µg/mL (Lu et al. 
2022)

2 Itraconazole Human 
plasma

Protein precipitation 
using acetonitrile 

vortex centrifugation

LC-MS/MS, 
triple quadrupole 

with +ESI

C18 (75 × 2.0 mm, 
3 µm)

Isocratic mode, acetonitrile: 
ammonium acetate pH 6.0 

(57:43), flow rate 0.2 mL/min

NA 0.015 µg/mL (Imoto et 
al. 2020)

3 Voriconazole, 
itraconazole, 
and 
posaconazole

Human 
serum

Protein precipitation 
using methanol and 
acetonitrile, vortex, 
and centrifugation

LC-MS/MS, 
triple quadrupole 

with +ESI

C18 (50 × 2.1 mm, 
3 µm) 

Gradient mode, ammonium 
acetate in formic acid, 

acetonitrile containing formic 
acid, flow rate 0.5 mL/min

NA 0.1 μg/mL for 
voriconazole, 0.05 μg/

mL for itraconazole and 
posaconazole

(Yoon et al. 
2019)

4 Voriconazole Human 
plasma

Protein precipitation 
using methanol, 

vortex, and 
centrifugation

LC-MS/MS, 
triple quadrupole 

with +ESI

C18 (100 × 
2.1 mm, 3.5 µm) 

Gradient mode, formic acid in 
water and methanol, flow rate 

0.4 mL/min

NA 0.1 µg/mL (Mei et al. 
2019) 

5 Voriconazole Human 
plasma

Protein 
precipitation, 
centrifugation

LC-MS, 
quadrupole with 

+ESI

C18 (150 × 
4.6 mm, 5 µm) 

Gradient mode, fomic acid 
in water and acetonitrile with 

formic acid, flow rate 1 mL/min

0.019 
µg/mL

0.039 µg/mL (Allegra et 
al. 2018)

6 Voriconazole Human 
serum

Protein precipitation 
using methanol 
and acetonitrile, 
centrifugation

LC-MS/MS, 
triple quadrupole 

with +ESI

C18 (50 × 2.1 mm, 
5 µm)

Gradient mode, acetic 
acid, ammonium acetate, 

trifluoroacetic acid, acetonitrile, 
flow rate 0.5 mL/min

NA 0.1 µg/mL (Avest et al. 
2018)

7 Voriconazole Human 
plasma

SPE LC-MS/MS, 
triple quadrupole 

with +ESI 

C18 (50 × 2.1 mm, 
3.5 µm)

Gradient mode, water 
containing formic 

acid:acetonitrile containign 
formic acid, flow rate 0.25 mL/

min

NA 0.05 µg/mL (Martial et 
al. 2018)

8 Fluconazole, 
itraconazole, 
isavuconazole, 
posaconazole 
and 
voriconazole 

Human 
plasma

Protein precipitation 
using acetonitrile, 

centrifugation

LC-MS, 
quadrupole with 

+ESI

C18 (150 × 
4.6 mm, 5 µm) 

Gradient mode, water 
containing formic 

acid:acetonitrile containign 
formic acid, flow rate 0.25 mL/

min

NA 58.59 ng/mL for 
fluconazole, 31.25ng/mL 

for itraconazole, 31.25 
ng/mL for isavuconazole, 

31.25 ng/mL for 
posaconazole and 58.59 
ng/mL for voriconazole 

(Fatiguso 
et al. 2017)

9 Voriconazole Human 
Serum

Protein precipitation 
using methanol 
and acetonitrile, 
centrifugation

LC-MS/MS, 
triple quadrupole 

with +ESI

C18 (50 × 3 mm, 
2.7 µm)

Isocratic mode, 
water:acetonitrile containing 
formic acid (30:70), flow rate 

0.3 mL/min

NA 0.7 µg/mL (Jeon et al. 
2017)

10 Voriconazole Human 
plasma

Protein precipitation 
using acetonitrile, 

centrifugation

LC-MS/MS, 
triple quadrupole 

with +ESI

C18 (50 × 4.6 mm, 
2.7 µm) 

Gradient mode, formic 
acid:acetonitrile, flow rate 0.9 

mL/min

NA 0.3 µg/mL (Li et al. 
2017)

tates are then separated from the analyte target. Because of 
its inexpensive cost and limited method requirements, this 
technique is one of the most commonly used for biologi-
cal matrices (Ma et al. 2008). Lipids, phospholipids, fatty 
acids, and another endogenous components in biological 
matrices usually not adequately separated from the sample 
because of the limitation of sample preparation using pro-
tein precipitation. This endogenous component can inter-
fere with analysis, especially with LC-MS detection (Koster 
et al. 2013). PP with acetonitrile and methanol is the most 
commonly used preparation method in the bioanalysis of 
triazole antifungal. When combined with vortex and cen-
trifugation at high speed, it can be used to separate the 
protein in the biological matrices (Tang 2017; Mueller et 
al. 2018; Blanco-Dorado et al. 2021; Yousefian et al. 2021).

Liquid-liquid extraction

One of the earliest sample preparation procedures utilized 
for biological sample analysis was liquid-liquid extraction 
(LLE). The octanol-water partition coefficient method is 

used in LLE to migrate analytes from an aqueous sam-
ple to a solvent that is immiscible with water. Emulsion 
formation, the need for extensive sample amounts, and 
the potential danger of organic solvents are only some of 
the problems with conventional LLE. Furthermore, this 
process sometimes requires several difficult-to-automate 
procedures. The LLE approach was integrated with other 
methods to overcome these limitations, including liquid 
phase microextraction (LPME) (D’Ovidio et al. 2022). 
LPME is the method of preparation sample, whereas the 
analyte target, which is usually in an aqueous solvent, 
sample separated with a low-volume extraction solvent, 
typically organic solvent. Based on the extraction sol-
vent’s interaction with the analyte, there are three forms of 
LPME: single drop microextraction (SDME), hollow fiber 
liquid-phase microextraction (HF-LPME), and dispersive 
liquid-liquid microextraction (DLLME) (Manousi and Sa-
manidou 2021). LLE with some organic solvents, such as 
diethyl ether, methyl tert-butyl ether (MTBE), n-hexane, 
and dichloromethane, were used for the separation of tri-
azole antifungal in biological matrices (Verweij-van Wis-
sen et al. 2012; Khalil et al. 2015; Al-Ghobashy et al. 2018).
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Table 5. Analysis of triazole antifungal drugs using UPLC.

No Analyte Matrices Sample Preparation HPLC system Stationary Phase Mobile Phase LOD/LLOD LOQ/LLOQ References
1 Fluconazole, 

itraconazole, 
voriconazole, 
posaconazole, 
Isavuconazole

Human 
plasma

SPE using methanol, 
water, formic 

acid, ammonium 
hydroxide

UPLC-MS/MS, 
triple quadrupole 

with +ESI

C18 (50 × 2.1 
mm, 1.7 µm)

Gradient mode, formic 
acid, acetonitrile, 

ammonium formate, 
flow rate 0.6 mL/min

NA 0.1 µg/mL for 
fluconazole, 20 ng/mL 
for itraconazole, 20 ng/
mL for voriconazole, 5 

ng/mL for posaconazole, 
and 50 ng/mL for 

isavuconazole

(Tanaka et 
al. 2022)

2 Posaconazole Rat 
plasma

Protein precipitation 
using acetonitrile, 

vortex, and 
centrifugation.

UPLC-MS/MS, 
triple quadrupole 

with +ESI

C18 (100 × 
2.1 mm, 1.7 µm)

Gradient mode, formic 
acid and acetonitrile, 
flow rate 0.3 mL/min

NA 5 ng/mL (Yang et al. 
2021)

3 Fluconazole, 
voriconazole, 
posaconazole

Human 
plasma

Protein precipitation 
using acetonitrile 

and methanol, 
vortex, and 

centrifugation.

UPLC-MS/MS, 
triple quadrupole 

with +ESI

C18 (50 × 2.1 
mm, 1.7 µm)

Gradient mode, formic 
acid, ammonium 
formate, water, 

acetonitrile, flow rate 
0.4 mL/min

NA 0.2 µg/mL for 
fluconazole, 0.02 µg/mL 
for voriconazole, 0.005 

µg/mL for posaconazole

(Kai et al. 
2021)

4 Voriconazole, 
itraconazole 
and 
fluconazole

Rat 
plasma

Protein precipitation 
using acetonitrile, 

vortex, and 
centrifugation.

UPLC-MS/MS, 
triple quadrupole 

with +ESI

C18 (50 × 2.1 
mm, 1.7 µm)

Gradient mode, 
acetonitrile and formic 

acid, flow rate 0.4 
mL/min

NA 0.5 ng/mL (Xie et al. 
2020)

5 Voriconazole Human 
whole 
blood

Volumetric 
Absorptive 

Microsampling 
using acetonitrile 

and methanol

UPLC-MS/MS, 
triple quadrupole 

with +ESI

Pentafluorophenyl 
(50 × 4.6 mm, 

2.6 μm) 

Gradient mode, 
ammonium 

acetate, formic acid, 
acetonitrile, flow rate 

0.7 mL/min

1.25 ng/mL 10 ng/mL (Moorthy 
et al. 2019)

6 Voriconazole Rat 
plasma

Protein precipitation 
using acetonitrile, 

vortex, and 
centrifugation.

UPLC-MS/MS, 
triple quadrupole 

with +ESI

C18 (50 × 2.1 
mm, 1.7 µm)

Gradient mode, 
acetonitrile and formic 

acid, flow rate 0.4 
mL/min

NA 5 ng/mL (Xu et al. 
2019)

7 Voriconazole Human 
plasma

LLE using MTBE, 
centrifugation

UPLC-MS/MS, 
triple quadrupole 

with +ESI

C18 (50 × 4.6 
mm, 1.7 µm)

Isocratic mode, 
acetonitrile:water: 

methanol (70:25:5), 
flow rate 0.3 mL/min

NA 1 ng/mL (Al-
Ghobashy 
et al. 2018)

8 Voriconazole Human 
serum

Protein precipitation 
using acetonitrile, 

vortex, and 
centrifugation.

UPLC-PDA, 
detection at 256 

nm

C18 (100 × 
2.1 mm, 1.8 µm)

Gradient mode, water 
and acetonitrile, flow 

rate 0.4 mL/min

NA 0.5 µg/mL (Bressán et 
al. 2018)

9 Isavuconazole Human 
plasma

Protein precipitation 
using methanol, 

vortex, and 
centrifugation.

UPLC-MS/MS, 
triple quadrupole 

with +ESI

Pentafluorophenyl 
(50 × 2.1 mm, 

2.6 μm) 

Gradient mode, 
isopropanol, formic 

acid, ammonium 
acetate, flow rate 0.6 

mL/min

NA 0.53125 µg/mL (Hösl et al. 
2018)

10 Isavuconazole Human 
plasma

Protein 
precipitation using 

ChromSystems 
reagent, vortex, and 

centrifugation

UPLC-FLD, 
excitation at 261 
nm, emission at 

366 nm

ChromSystems 
column

Isocratic mode using 
Chromsystems mobile 

phase, flow rate 1.2 
mL/min 

NA 0.2 µg/mL (Jørgensen 
et al. 2022)

11 Isavuconazole, 
voriconazole, 
posaconazole, 
fluconazole, 
itraconazole

Human 
plasma

Protein precipitation 
using acetonitrile, 

vortex, and 
centrifugation.

UPLC-MS/MS, 
triple quadrupole 

with +ESI

C18 (50 × 2.1 
mm, 1.7 µm)

Gradient mode, water, 
acetonitrile, formic 
acid, flow rate 0.4 

mL/min

NA 0.2 µg/L for 
isavuconazole, 0.2 µg/L 

for voriconazole, 0.2 
µg/L for posaconazole, 

0.5 µg/L for fluconazole, 
0.2 µg/L for itraconazole

(Toussaint 
et al. 2017)

12 Fluconazole, 
voriconazole, 
posaconazole, 
itraconazole

Human 
serum

Protein precipitation 
using acetonitrile 
and formic acid, 

vortex, and 
centrifugation.

UPLC-MS/MS, 
triple quadrupole 

with +ESI

C18 (30 × 2.1 
mm, 1.7 µm)

Gradient mode, 
ammonium acetate 

in water, ammonium 
acetate in methanol 

and formic acid, flow 
rate 0.5 mL/min

0.06 µg/mL for 
fluconazole, 

0.065 µg/mL for 
voriconazole, 

0.029 µg/mL for 
posaconazole, 

0.029 µg/mL for 
itraconazole

1 µg/mL for fluconazole, 
0.1 µg/mL for 

voriconazole, 0.1 µg/mL 
for posaconazole, 0.1 µg/

mL for itraconazole

(Basu et al. 
2017)

13 Voriconazole Human 
plasma

Protein precipitation 
using methanol, 

vortex, and 
centrifugation.

UPLC-MS/MS, 
triple quadrupole 

with +ESI

C18 (50 × 2.1 
mm, 1.7 µm)

isocratic mode, 
acetonitrile: 1% formic 
acid (45:55), flow rate 

0.50 mL/min. 

NA 2 ng/mL (Wang et 
al. 2015)

14 Fluconazole, 
posaconazole, 
voriconazole, 
itraconazole,

Human 
serum

Protein precipitation 
using diethyl ether, 
dichloromethane, 

n-hexane, and 
n-amyl alcohol, 
centrifugation.

UPLC-PDA, 
detection at 
210–260 nm

C18 (150 × 
2.1 mm, 1.7 µm)

Gradient mode, 
acetonitrile and 

ammonium 
bicarbonate pH 10, 

flow rate 0.4 mL/min

0.09 mg/L for 
fluconazole, 

0.015 mg/L for 
posaconazole, 

voriconazole, and 
itraconazole,

0.3 mg/L for 
fluconazole, 0.05 mg/L 

for posaconazole, 
voriconazole, and 

itraconazole,

(Mistretta 
et al. 2014)
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No Analyte Matrices Sample Preparation HPLC system Stationary Phase Mobile Phase LOD/LLOD LOQ/LLOQ References
15 Voriconazole, 

posaconazole, 
isavuconazole, 
itraconazole 

Human 
plasma

LLE using 
n-hexane and 

dichloromethane, 
centrifugation

UPLC-UV, 
detection at 260 

nm

C6 (100 × 2.1 
mm, 1.7 µm)

Gradient mode, 
phosphate buffer pH 
2.5, acetonitrile, flow 

rate 0.4 mL/min

NA 0.050 µg/mL for 
voriconazole, 0.053 µg/
mL for posaconazole, 

0.054 µg/L for 
isavuconazole, 0.052 
µg/L for itraconazole 

(Verweij-
van 

Wissen et 
al. 2012)

16 Posaconazole Human 
plasma

protein precipitation 
with acetonitrile-

methanol (75%/25%, 
vol/vol). 

UPLC MS triple 
quad ESI

C18 (30 × 2.1 
mm, 1.9 µm)

Gradient mode, 
ammonium formate, 

acetic acid in 
methanol, acetic acid 
in acetonitrile, flow 

rate 0.8 mL/min

NA 0.014 µg/mL (Bertrand 
et al. 2010)

Microextraction technique
For the preparation of biological samples, microex-
traction techniques such as dispersive liquid-liquid mi-
croextraction (DLME) and solid-phase microextraction 
(SPME) are very helpful, especially when there is a limited 
number of samples to work with. The analyte and matrices 
properties, as well as the chromatographic and detection 
technique to be used must always be taken into consider-
ation when choosing the sample preparation procedure. 
A method for preparing samples called solid phase mi-
croextraction combines sampling, extraction, and analyte 
pre-concentration into a single step. Adsorbents used in 
solid-phase microextraction (SPME) can take the form 
of a solid or a liquid, depending on the inert fiber that 
was coated on the polymer. Different types of analytes are 
transferred to the solid surface following interaction with 
liquid biomatrices depending on their affinity to the coat-
ed material. The fiber extracts analytes in proportion to 
their concentration in the sample at equilibrium (Locatelli 
et al. 2019). Another type of LPME is dispersive liquid-liq-

uid microextraction. DLME is based on a ternary solvent 
system that utilizes a combination of water-immiscible 
organic solvent as the extraction solvent and water-mis-
cible organic solvent as the disperser solvent. In DLME, a 
syringe is used to quickly inject a sample into an aqueous 
sample solution. Extraction efficiency might be increased 
by combining this approach with ionic liquids (ILs) or 
deep eutectic solvents (Manousi and Samanidou 2021). 
DLLME has been applied to separate triazole antifungal 
from the CSF sample. The extraction condition consists 
of a low volume of sample and solvent: 100 µL of chloro-
form, 100 µL of isopropyl alcohol, 200 µL of CSF, 200 µL of 
50 mM phosphate buffer pH 7.3 (Zarad et al. 2021).

Solid phase extraction

Solid phase extraction (SPE) separates a mixture into 
desired and undesirable components in the stationary 
phase by using the affinity of solutes dissolved or sus-
pended in a liquid (mobile phase). By elution with an 

Figure 4. Chromatograms samples of blank serum (A) and patient samples with low and high concentrations of voriconazole (B), 
posaconazole (C), itraconazole (D), and 4-OH-itraconazole (E). Reuse with permission from (Yoon et al. 2019).
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appropriate solvent or thermal desorption into the gas 
phase, analytes are recovered. This method is imple-
mented in a number of studies as an appealing alterna-
tive to PP. SPE provides greater analyte recovery since 
it combines extraction and purification techniques in 
single or multiple steps. SPE is considered a greener 
technique than LLE methods since It is superior to com-
peting methods in terms of speed, extraction efficiency, 
sample size, ease of automation, and compatibility with 
online system chromatography. The type of adsorbent 
used is determined by the SPE mechanism for the sepa-
ration of the analyte target (Locatelli et al. 2019). Today’s 
SPE columns provide a wide range of stationary phases, 
including hydrophobic phases such as C18 and C8, ion 
exchange, or mixed mode that can be used for optimized 
analyte separation in biological matrices. Most analyte 
extractions are performed using C18 and hydrophil-
ic-lipophilic balance (HLB) cartridges. HLB cartridge 
provides some advantages over C18 because of its abil-
ity to remain saturated while simultaneously adsorbing 
analytes with varying polarity and pH values (Kanneti 
et al. 2011; Mwando et al. 2017). SPE has been widely 
used in the separation of triazole antifungals in biolog-
ical matrices with HLB cartridges as the most common 
used method used in the separation (Zufía et al. 2010; 
Martial et al. 2018; Nannetti et al. 2018)

Molecularly imprinted polymer

Molecularly imprinted polymer (MIP) is a separation 
method in which polymers are synthesized using a mo-
lecular imprinting technique. This technique leaves cav-
ities in the polymer matrix that have a certain affinity 
with the template molecules used. MIP has a unique af-
finity for certain compounds. Compared to other sepa-
ration methods, MIP has several advantages: predictable 
structure, specific recognition of target molecules, and 
wide application in various fields, which makes it useful 
for a variety of applications, including sorbents for sol-
id phase extraction, column chromatography stationary 
phase, separation of racemates, and chemical reaction 
catalysts. (Chen et al. 2011; Cheong et al. 2013; Arabi et 
al. 2020). Several methods have been used to utilize MIP 
for the separation of triazole antifungal agents in phar-
maceutical products and biological matrices. The utili-
zation of MIP as a novel method for sample preparation 
exhibits compatibility with the analysis of analytes in in-
tricate matrices while also necessitating minimal sample 
volumes (Szultka et al. 2013; Manzoor et al. 2015; Zad 
et al. 2018).

Recommendations

The characteristics and limitations of the liquid chro-
matographic system, as well as the ability of detectors 
to detect interference from other compounds that could 

elute at the same retention time as the azoles, will in-
fluence the development of an analytical method for 
antifungal TDM. Currently, the preferred analytical 
technique is UPLC because of its enhanced chromato-
graphic capabilities compared to HPLC. This preference 
is primarily attributed to UPLC’s higher efficiency and 
less susceptibility to matrix effects. The type of biological 
sample to be analyzed (e.g., plasma, serum, cerebrospi-
nal fluid, urine), the frequency with which determina-
tions must be made, and the desired analytical sensitivity 
will determine the detector and the sample preparation 
method. When combined with an MS detector, it can be 
a powerful analytical method to analyze triazole antifun-
gal in biological matrices.

Conclusions

Triazole antifungal drugs, commonly used for the pre-
vention and treatment of invasive fungal infections, 
must be monitored by TDM to ensure successful of 
treatment, minimize the toxicity risk, and prevent the 
drug resistance. Currently, the method that has been 
widely used for TDM of triazole antifungal drugs in 
biological matrices is liquid chromatography with var-
ious detectors, which is assisted by the sample prepa-
ration method to remove sample matrices. Establishing 
reproducible analytical methodologies appropriate for 
the continuous determination of pharmaceuticals in bi-
ological samples is the first step in TDM. In order to 
quantify triazole antifungal medication concentrations 
in biological samples, chromatographic system control 
is necessary, such as stationary phase, mobile phase, pH, 
and flow rate, to get excellent results in the analytical 
method. Various procedures were utilized to prepare 
biological samples before chromatographic analysis, 
with protein precipitation, LLE, and SPE being the most 
common methods. TDM of triazole antifungal utilizing 
HPLC-UV usually requires extensive sample prepara-
tion and a lack of sensitivity. HPLC-FLD is rarely used 
as a method choice for TDM of antifungal drugs. LC-
MS provided great sensitivity and selectivity, whereas 
extensive preparation is not required. Among all these 
methods, the UPLC-MS method had overcome another 
method due to its sensitivity and specificity, as well as 
its simple sample preparation and quick analysis time. 
Future research for TDM and analytical methods of 
triazole antifungal drugs should be focused on the de-
velopment of selective and sensitive analytical methods 
and sample preparation to get a valid method that con-
forms to established standards.
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