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Abstract
Tobacco use continues to be the leading cause of preventable death worldwide. Smoking is highly addictive because nicotine can 
stimulate nicotinic acetylcholinergic (nACh) receptors which release dopamine. Smoking cessation can be done with pharmaco-
therapy such as bupropion or varenicline, but it is associated with side effects. Herbal medicine is a possible easy option for smoking 
cessation treatment. This study uses ginger as a natural ingredient. Gingerol and shogaol were found to be the active compounds of 
ginger which are responsible for their pharmacological action and have been identified as TRPV1 agonists. The predictive binding 
of several forms of gingerol and shogaol to TRPV1 was analyzed using docking analysis in an in silico model. The method used is 
molecular docking with parameter observations and systematic literature review studies with dopamine as a comparator compound. 
The results of molecular docking of all herbal compound samples showed that no bioactive compounds had a lower binding energy 
value than the native ligands. However, all bioactive compounds from ginger show a binding energy value around -8,4 until -7.2 kkal/
mol. Based on the molecular docking results, it can be concluded that the ginger herbal compounds have a better interaction poten-
tial than the control, although not as good as the native ligands. 12-Shogaol, 8-Shogaol, 12-Gingerol, 10-Shogaol, and 10-Gingerol 
are thought to target dopamine receptor proteins potentially.
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Introduction

The use of tobacco remains the primary contributor 
to avoidable mortality on a global scale (GBD 2020). 

Approximately 1.1 billion individuals engage in tobacco 
use, with an associated annual mortality rate of 6 mil-
lion fatalities. Moreover, the inhalation of secondhand 
smoke is accountable for an extra 600,000 fatalities. If 
the present trajectory continues, it is projected that the 

global firearm-related mortality rate would surpass eight 
fatalities by the year 2030. Furthermore, the implemen-
tation of ill-advised measures may exacerbate this issue, 
resulting in a much higher number of deaths. The ad-
dictive nature of tobacco smoking may be attributed to 
the presence of nicotine (WHO 2022; FDA 2022). The 
nicotine included in tobacco elicits the activation of nic-
otinic acetylcholinergic (nACh) receptors, subsequent-
ly leading to the release of dopamine. Initially, nicotine 
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has a direct stimulatory effect on the ventral tegmen-
tal area (VTA) dopaminergic neurons, leading to the 
subsequent release of dopamine inside the nucleus ac-
cumbens (NAc). Additionally, the activation of nicotinic 
acetylcholine receptors (nAChR) situated on the dopa-
minergic terminals has been shown to enhance the re-
uptake of dopamine (Di Chiara 1988; Zhang et al. 2009; 
McGranahan et al. 2011; Faraone et al. 2014; Ashok et 
al. 2019). Within the human body, dopamine engages in 
interactions with a specific class of receptors known as 
dopamine receptors, which are categorized as G-protein 
coupled receptors (GPCRs) (Pratama 2016; Olasupo et 
al. 2021).

Smoking cessation can be done with pharmacotherapy 
such as nicotine replacement therapy, bupropion or va-
renicline. However, these drugs are associated with side 
effects such as nausea, dry mouth, and sedation (Jiloha 
2014; Howes et al. 2020; Mendelson 2022). Herbal medi-
cine is a possible option for smoking cessation treatment 
that is easily accessible, less expensive and has fewer side 
effects. This study uses ginger as a natural ingredient to 
be formulated with medicine. Zingiber officinale or also 
known as ginger, is widely used as a food or beverage in-
gredient and is also used as a herbal medicine. Ginger is 
known for its unique and significant therapeutic effects 
such as anticancer, antioxidant, anticoagulant, cardio-
vascular effects, antimicrobial, antiemetic, antipyretic, 
anti-inflammatory and chemoprotective potential. Gin-
gerol and shogaol were found to be ginger’s active com-
pounds responsible for their pharmacological action. Of 
the eight ginger elements, shogaol and ginger enone-A 
showed the highest dock scores with strong and active 
site residue interactions so they could be the most ap-
propriate choice (Nag and Banerjee 2021). Gingerol and 
shogaol are the most suitable compounds for ginger 
use and are structurally similar to capsaicin and have 
been identified as TRPV1 agonists. Predictive binding 
of several forms of gingerol and shogaol to TRPV1 was 
analyzed using docking analysis in an in silico model 
(Fajrin et al. 2020; Crichton et al. 2023). Each ginger ho-
mologous group contains unbranched alkyl chains with 
lengths and masses ranging between 300 and 500 Da. For 
example, gingerol homologs include 4-, 6-, 8-, 10-, and 
12-gingerol and shogaol homologues include 4-, 6-, 8-, 
10-, and 12-shogaol (Peng et al. 2023). The method used 
is molecular docking with observation parameters and 
systematic literature review studies with dopamine as a 
comparison compound (Pratama 2016; Syahputra 2020; 
Harahap 2021).

Materials and methods
Molecular docking

This study employs a computer approach known as a tech-
nical technique. The in silico approach is an appropriate 
methodology for evaluating the structure of the medicine 

that has been acquired. The molecular docking procedure 
involves the placement of DUD and DUD-E molecules 
into the ligand binding site of the target protein, which is 
carried out using PLANTS1.2. The docking process fol-
lows the standard parameters for optimal results. Conse-
quently, the first docking score was calculated using the 
ChemPLP algorithm, which integrates PLP (Piecewise 
Linear Potential) with GOLD Chemscore. The binding 
center for docking is determined by using the coordinates 
of the ligand’s center inside the target protein structure. A 
frequently used value for the bond site radius in docking 
is 10, which is considered rather big. The radius of the glu-
cocorticoid receptor (GR; 9) was somewhat decreased in 
accordance with the dimensions of the ligand binding site. 
For the purpose of NIB rescoring, a total of ten docking 
solutions are generated for each chemical. The objective is 
to provide an alternative docking solution for the purpose 
of rescoring.The R-NiB method largely depends on the use 
of early docking success software to create several dock-
ing poses during the rescoring phase. It should be noted 
that no coordinate optimization or further sampling was 
conducted in this process. The use of the CROP score in 
this research has an inherent impact on the outcomes of 
the R-Ni analysis. Consensus scoring enhances the inte-
gration of the original ChemPLP docking score with the 
R-NiB score. All potential permutations in which CROP-
based and ShaEP-based scores were allocated distinct 
weights were examined at intervals of 5%. The discussion 
focused on the consensus scoring configuration that yield-
ed the greatest initial enrichment. The scores assigned to 
each anchoring conformer by the PLANTS and ShaEP 
algorithms were subjected to normalization, resulting in 
a transformation to a standardized scale ranging from 1 
to 0. These normalized values were then merged to pro-
vide a consensus score. The calculation of the enrichment 
factor involves determining the valid positive rate when 
either 1% or 5% of the feed molecule has been detected 
(EFn%DEC). This measure is used to ensure the reliability 
of future comparisons with other samples. The equation 
for calculating the enrichment factor is shown below.BThe 
calculation of the enrichment factor involves the use of a 
positive rate, namely either 1% or 5% (EFn%DEC). Please 
refer to the equation provided below.

% =
%

100% 

Molecular dynamic simulation

The molecular dynamics (MD) simulation was conduct-
ed using the gmx_MMPBSA Version=v1.5.6 software, 
which is based on MMPBSA.py v.16.0 (Valdés-Tresanco 
et al. 2021). A total of 500 frames were evaluated at a tem-
perature of 310.15 Kelvin. The interpretation of the mo-
lecular dynamics (MD) results was visually presented via 
the use of several graphical representations. Specifically, a 
graph depicting the root mean square deviation (RMSD) 
was employed to illustrate the structural deviations of the 
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protein backbone. Additionally, the root mean square 
fluctuation (RMSF) was plotted on the C-alpha atoms to 
demonstrate the local flexibility of the protein. Further-
more, the solvent-accessible surface area (SASA) of the 
protein was shown using the qtGrace program.

Results and discussion
Molecular docking

Dopamine receptors

Redocking was carried out beforehand between each 
protein and its native ligand from PDB, namely 6CM4 
(8NU/Risperidone), 5WIU (AQD/Nemonapride), and 
4M48 (21B/Nortriptyline). RMSD redocking results are 
better below 2 Å to validate that the methods and grid 
boxes used are appropriate or valid (Trott and Olson 
2010). RMSD of native ligands from redocking results 
were 2.112 Å, 0.553 Å and 0.859 Å, respectively. We have 
tried the RMSD redocking for 6CM4 until optimal, but 
the best is still above 2 Å. The results of molecular dock-
ing of all samples of herbal compounds show that no 
bioactive compounds have lower energy binding values 
than native ligands. However, all bioactive compounds 
derived from ginger show a binding energy value of less 
than -7 ± 0.5 kcal/mol, as shown in Table 1. In addition, 
the Top 5 of the 13 derivative compounds were selected 
(based on the average binding affinity/BA ranking), which 
were continued for further analysis together with positive 
controls and native ligands, namely 12-Shogaol, 12-Gin-
gerol, 10-Gingerol, 10-Shogaol and 8-Shogaol.

Fig. 1, shows the results of the 3D visualization of the 
respective complexes of the dopamine receptor protein 
with compound and control ligands. The binding posi-
tion and each ligand are the same as the control because 
the grid box has been adjusted to the control redocking, 
which produces an RMSD below 2 Å (Trott and Olson 
2010). Based on the molecular docking results, it can be 
concluded that the herbal compound ginger has a bet-
ter interaction potential than the control, although not 
as good as the native ligand. 12-Shogaol, 12-Gingerol, 
10-Gingerol, 10-Shogaol and 8-Shogaol are predicted to 
target dopamine receptor proteins potentially.

Results of the molecular mechanics pois-
son-boltzmann surface area (MMPBSA) 
D2 Dopamine Receptors

The mmPBSA results from the molecular dynamics simu-
lations between D2 Dopamine Receptors and 12- Shogaol 
and Bupoprion in Table 2 show that the free energy val-
ue of Bupropion is more negative. The free energy val-
ue between D2 Dopamine receptors and Bupropion is 
-13.68 kcal/mol. Based on free energy calculations with 
mmPBSA, Bupropion interacts better with D2 Dopamine 
Receptors. The results are consistent with the molecular 
dynamics simulation results.

Results of Molecular Dynamics (MD) 
simulation D2 dopamine receptor with 
some test compounds

Root Mean Square Deviation (RMSD)
RMSD measures the average deviation of a protein struc-
ture from its original conformation at a given time and 
is an essential indicator for evaluating the structural sta-
bility of a protein. Molecular Dynamics Simulation has 
been carried out for 50,000 ps to see the stability of the D2 
Dopamine Receptor when it interacts with the test com-
pounds, namely 12-Shogaol and Bupropion. MD results 
indicate the Native protein (D2 Dopamine Receptor) has 
RMSD at around 0.5 nm. Meanwhile, the D2 Dopamine 
Receptor experienced a slight increase in the RMSD value 
when interacting with the test compounds 12-Shagaol and 
Bupropion, namely 0.7 and 0.8 nm (Fig. 2). Even though 
there was an increase in the RMSD value, the increase was 
not too significant. The RMSD D2 Dopamine Receptor 
graph and the interactions with 12-Shogaol and Bupropi-
on have the same RMSD value at 40 ns.

Root Mean Square Fluctuation (RMSF)
We also analyzed the flexibility of the D2 Dopamine 
Receptor and its interactions with the test compounds 
(Fig. 2). The root mean square fluctuation (RMSF) refers 
to the measure of the average displacement of individ-
ual amino acid residues within a protein in relation to 
the average conformation. There is a positive correlation 
between the magnitude of residual fluctuation and the 
level of flexibility shown by the residue when subjected 
to pressure treatment (Huang et al. 2021). The RMSF 
D2 Dopamine Receptor value when interacting with 
12-Shogaol and Bupropion compounds is slightly small-
er when compared to the RMSF D2 Dopamine Receptor 
without the ligand.

Solvent-Accessible Surface Area (SASA)
SASA analysis calculates the protein surface area that sol-
vents can access. Increasing SASA values can show relative 
expansion (Krebs and De Mesquita 2016). In the D2 Do-
pamine Receptor without ligand compounds, the SASA 
value is 231.06 nm2. Meanwhile, the SASA D2 Dopamine 
Receptor value, when interacting with the test compounds 
12-Shogaol and Bupropion, experienced a slight change, 
namely 232.92 nm2 and 230.30 nm2, respectively (Fig. 3).

Conclusion

In conclusion, 12-Shogaol and 12-Gingerol can be poten-
tial as an alternative of smoking cessation drug or can be 
used as a primary platform for developing new smoking 
cessation drugs. In research, 12 shogaol and 12 gingerol 
also affect dopamine. Molecular Dynamic (MD) simula-
tions show that bupropion has a more stable bond than 
12-shogaol, but ginger has a stronger bond. Therefore, 
we suggest conducting further research to see which 
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Figure 1. Docking result visualization, a) Ligand bond position, b) Dopamine, c) Bupropion, d) Nemonapride/NL, e) 12-Shogaol, 
f) 12-Gingerol, g) 10-Shogaol, h) 10-Gingerol, and i) 8-Shogaol.

4M48

6CM4 5WIU

A B

Figure 2. Root Mean Square Deviation (A), Root Mean Square Fluctuation (B) D2 Dopamine Receptor when interacting with the 
test compounds 12-Shogaol and Bupropion.

Table 1. Binding affinity (BA) between dopamine receptor target proteins and compound ligands and controls.

Ligan 6CM4 5WIU 4M48 Mean Ranking
Ranking Binding affinity (Kkal/mol) Ranking BA (Kkal/mol) Ranking BA (Kkal/mol)

Dopamine 16 -6.6 16 -6.1 16 -6.1 16.00
Bupropion 5 -7.8 15 -7 9 -7.4 9.67
Nemonapride - - 1 -9.3 - - 1.00
Risperidone 1 -11.6 - - - - 1.00
Nortriptyline - - - - 1 -10.1 1.00
12-Shogaol 2 -8 4 -8.3 4 -7.6 3.33
12-Gingerol 4 -7.9 5 -8.3 10 -7.3 6.33
10-Shogaol 7 -7.7 2 -8.4 2 -8 3.67
10-Gingerol 3 -7.9 7 -8.2 12 -7.2 7.33
8-Shogaol 9 -7.6 3 -8.3 6 -7.5 6.00
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Molecular Dynamic content of other ginger components 
is more stable.
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