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Abstract
In this work, nine 6-fluoro-triazolo-benzothiazole derivatives were prepared and evaluated for in vitro antimitotic activity. In ad-
dition, in silico study was also done using tubulin protein (PDB: 6QQN) by molecular docking method. Results revealed that TZ2 
and TZ9 were the most active compounds with antimitotic action opposing the standard drug, aspirin. Results of molecular docking 
exhibited the inhibitory potential of triazolo-benzothiazole against tubulin protein. The mitotic study indicates the efficacy of tri-
azolo-benzothiazole analogues in inhibiting the proliferation of cancer cells either by promoting microtubule formation or affecting 
microtubules, thereby preventing microtubule breakdown.
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Introduction

Cancer is a major cause of mortality globally, in both 
industrialized and developing nations (Mollinedo and 
Gajate 2003). Many synthetic and natural anticancer 
medications cure various forms of leukaemias, lympho-
mas, and solid tumours. Despite great advances in cancer 
chemotherapy, the management of cancer is still a chal-

lenging task. Over the past decades, various highly active 
natural and synthetic compounds with anticancer poten-
tial have been discovered, including microtubule poisons 
such as paclitaxel and other taxanes, which have proved 
beneficial in treating certain cancers like breast cancer, 
lung cancer, and ovarian cancer.

Benzothiazole is an interesting moiety in medicinal 
chemistry that has been reported to exhibit anticancer, an-
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titumor, antimicrobial, anticonvulsant, anti-diabetic, anti-
tubercular, and antibacterial activity (Siddiqui et al. 2007; 
Rajeeva et al. 2009; Dewangan et al. 2010; Nitin et al. 2010; 
Naresh et al. 2013; Sharma et al. 2013; Prabhu et al. 2015; 
Naresh et al. 2021). The second position of the benzothi-
azole moiety is suitable for substitution. The benzothiazole 
moiety fused with triazole ring with halogen substitutions 
of the phenyl ring could be an ideal scaffold for the de-
velopment of therapeutic agents against cancer and other 
infectious diseases (bacterial, fungal and tubercular). In 
this work, some novel 6-fluoro-triazolo-benzothiazole 
analogues were designed and synthesized for their eval-
uation as antimitotic agents (Fig. 1). To identify potential 
tubulin inhibitors in silico study of the designed analogues 
was also carried out by molecular docking method.

Materials and methods
All the chemicals used were of synthetic grade. The melting 
point was determined by digital melting point apparatus. 
Thin-layer chromatography (TLC) was used to monitor 
the progress of reaction progress by using GF254 pre-
coated aluminum plates (Merck), ethyl acetate: n-hexane 
(3:1) as the mobile phase, and ultra-violet (UV) chamber 
for visualization of spots. ELICIO FT-IR spectrometer 
was used to acquire the IR spectrum (Annavarapu et al. 
2022). The 1H-NMR spectra were recorded in deuterated 
dimethyl sulfoxide (DMSO-d6) using a BRUKER Av 400 
spectrometer. Using Shimadzu GC-MS QP 5000, mass 
spectra (MS) were recorded.

Chemistry

Synthesis of 7-chloro-6-fluorobenzo[d]thi-
azol-2-amine
About 1.45 g (0.01 mole) of fluorochloro aniline and 8 gm 
(0.08 mole) of potassium thiocyanate were mixed with 
20 mL of cold glacial acetic acid and 1.6 mL of bromine 
solution was added into it from a dropping funnel and ag-
itated with a magnetic stirrer in an ice bath. The mixture 

was agitated for 10 hours at room temperature after add-
ing the bromine solution. Overnight, an orange precipitate 
was formed at the bottom of the flask, it was then added 
with 6 mL of water and the mixture was promptly heated 
to 85 °C and filtered. The reaction mixture was cooled and 
neutralized which finally yielded a dark brown precipitate. 
After benzene re-crystallization and animal charcoal treat-
ment, 2-amino-6-fluoro-7-chloro-(1,3)-benzothiazole was 
obtained as green precipitate (1 gm, 51.02%, melted at 
210–212 °C) after drying in 80 °C in an oven.

Synthesis of 7-chloro-6-fluoro-2-hydrazinyl-
benzo[d]thiazole
To a 500 mL round bottom flask, 10 mL of concentrated 
HCl was added drop wise to 12 mL (0.02 mole) of hydrazine 
hydrate while stirring at 5–10 °C. After cooling the solution, 
20.2 gm of 7-chloro-6-fluoro 2-amino benzothiazole was 
added, followed by 60 mL of ethylene glycol. The resulting 
mixture was refluxed for 3 hours processed by first letting 
the residue sink to the bottom of a beaker filled with crushed 
ice, then filtering, drying, and recrystallizing with ethanol.

Synthesis of 8-chloro-7-fluoro-1,9a-dihydrol 
[1,2,4] triazole [3,4-b][1,3] benzothiazole
About 2.19 gm of 7-chloro-6-fluoro-2-hydrazinyl-1,3-ben-
zothiazole and 1 gm of potassium carbonate were added 
to 25 mL of formic acid in a 250 mL round bottom flask. 
The adduct was stabilized after two hours of refluxing in 
crushed ice. The residue was then purified and dried to 
obtain the pure product.

Synthesis of 8-chloro-7-fluoro-1-[4-meth-
ylphenyl]sulphonyl-1,9a-dihydro[1,2,4]tri-
azolo[3,4-b][1,3]benzothiazole
In a 500 mL of round bottom flask, 2.2 gm of 8-chloro-7-flu-
oro-1,9a-dihydrol [1,2,4] triazole (0.013 mole) was trans-
ferred in the presence of pyridine and 1.71 g of p-toluene 
sulphonamide, (0.02 mole) after which it was refluxed for 
two hours, poured onto pulverized ice, drained, final puri-
fied residue was obtained by recrystallization with ethanol.

In a 100 mL round bottom flask, 2.7 gm of 8-chloro-7-flu-
oro-1-[4-methylphenylsulphonyl-1,9a-dihydro [1,2,4] tri-
azolo [3,4b] [1,3] benzothiazole was refluxed with equal 
quantities of primary and secondary aromatic amines for 
2 hours in DMF. The mélange was chilled before being 
spread over pulverised ice. Using a sprinkle of activated 
charcoal, after alcohol and benzene separation, the mate-
rial was filtered, dehydrated, and recrystallized from alco-
hol. The scheme of synthesis of 6-fluoro-triazolo-benzo-
thiazole analogues is depicted in Fig. 2.

6-fluoro-3-[(4-methylphenyl) sulfonyl]-N-(2-amino phe-
nylamino)-3,3a-dihydro [1,2,4] triazolo [5,1-b][1,3] benzo-
thiazol-5-amine (TZ1): Yield: 83%; white powder; mp: 112–
114 °C; mf: C21H18FN5O2S2, mw: 455.52; Rf = 0.74 (EtOAc: 
n-But: CHCl3 2:1:1); FT-IR (KBr, cm-1): 1276.78, 1432.75, 
1660, 1069, 1442, 1105, 1196; 1H-NMR (DMSO-d6, 300 
MHz) d ppm: 6.78–6.86 (m, 11H, Ar) 4.28 (s, 1H, NH2) 
3.01 (m, 3H, CH3), 8.50 (s, 1H, NH); 13C-NMR (CDCl3, 100 

Figure 1. 6-fluoro-triazolo-benzothiazole scaffold.



Pharmacia 70(4): 887–894 889

MHz) d ppm: 24.3, 59.5, 104.8, 110.2, 113.5, 117.2, 119.1, 
119.7, 119.9, 122.8, 127.2, 127.8, 129.2, 129.4, 129.8, 133.2, 
136.7, 138.4, 141.5, 149.1, 154.8; MS (m/z), M+: 455.50.

6-fluoro-3-[(4-methylphenyl)sulfonyl]-N-(4-hydroxy-
propanoic acid)-3,3a-dihydro [1,2,4] triazolo [5,1-b] [1,3] 
benzothiazol-5-amine (TZ2): Yield: 49%; Brown solid; mp: 
118–122 °C; mf: C24H21FN4O5S2; mw: 528.57; Rf = 0.69 
(EtOAc: n-Bu: CHCl3: 2:1:1); FT-IR (KBr, cm-1): 1348.45, 
1527.14, 1598.48, 1127.34, 1398.72, 1164.64, 1118.53; 
1H-NMR (DMSO-d6, 300 MHz) d ppm: 6.21–6.92 (m, 
10H, Ar) 9.38 (s, 1H, NH), 1.96 (m, 3H, CH3) 2.98 (s, 
2H, CH2), 9.81, 13.10 (d, 2H, OH); 13C-NMR (CDCl3, 100 
MHz) d ppm: 24.8, 35.5, 60.8, 65.9, 67.4, 82.7, 103.7, 104.8, 
113.6, 114.8, 115.3, 128.1, 129.4, 129.6, 129.8, 132.2, 133.4, 
133.8, 136.5, 141.4, 143.2, 154.0, 155.6, 174.2 MS (m/z), 
M+: 528.24.

N-(carboxy phenyl amino)-6-fluoro-3-[(4-methyl phe-
nyl) sulfonyl]-3,3a-dihydro [1,2,4] triazole [5,1-b] [1,3] 
benzothiazol-5-amine (TZ3): Yield: 72.8%; orange solid; 
mp: 161–163 °C; mf: C21H17FN4O3S2; mw: 456.41; Rf = 0.70 
(CHCl3: n-Bu: EtOAc: 1:2:1); FT-IR (KBr, cm-1): 1298.21, 
1521.57, 1614.57, 1152.86, 1487.45, 1019.26, 1224.26; 
1H-NMR (DMSO-d6, 300 MHz) d ppm: 7.16–7.23 (m, 
8H, Ar), 9.38 (s, 1H, NH), 2.15 (m, 3H, CH3) 2.99 (s, 2H, 

CH2), 9.87, 11.82 (d, 2H, OH), 3.14 (s, 1H, NH); 13C-NMR 
(CDCl3, 100 MHz) d ppm: 24.6, 60.2, 104.2, 110.5, 113.4, 
116.2, 116.8, 120.2, 120.6, 127.2, 127.6, 129.1, 129.4, 129.7, 
133.3. 136.5, 141.6, 148.2, 149.1, 154.3, 162.6; MS (m/z), 
M+: 456.15.

N-(4-methoxyphenylamino)-6-fluoro-3-[(4-methyl 
phenyl) sulfonyl]-3,3a-dihydro [1,2,4] triazolo [5,1-b] 
[1,3] benzothiazol-5-amine (TZ4): Yield: 48.6%; pink 
solid; mp: 186–188 °C; mf: C22H19FN4O3S2; mw: 470.53; 
Rf = 0.53 (CHCl3: n-But: EtOAc: 2:1:1); FT-IR (KBr, cm-

1): 1311.85, 1538.47, 1597.41, 1123.82, 1476.14, 1083.53, 
1191.68; 1H-NMR (DMSO-d6, 300 MHz) d ppm: 7.12 
-7.68 (m, 10H, Ar), 9.31 (s, 1H, NH), 3.01 (m, 3H, CH3), 
2.92 ( s, 2H, CH2), 3.27, 2.45 (s, 2H, CH2); 13C-NMR 
(CDCl3, 100 MHz) d ppm: 24.2, 55.9, 60.4, 104.8, 110.3, 
113.6, 115.2, 115.6, 120.1, 120.8, 127.2, 127.4, 129.3, 
129.6, 129.9, 131.9, 133.6, 141.6, 149.5, 150.2, 152.4, 
154.6; MS (m/z), M+: 470.25.

6-f luoro-3-[(4-methylphenyl)sulfonyl]-morpho-
nyl-3,3a-dihydro [1,2,4] triazolo [5,1-b] [1,3] benzothi-
azol-5-amine (TZ5): Yield: 63.14%, milkfish; mp: 168–172 
°C; mf: C19H20FN5O3S2; mw: 449.51; Rf = 0.82 (EtOAc:n-Bu1: 
CHCl3: 2:1:1); FT-IR (KBr, cm-1): 1198.57, 1457.01, 1668.27, 
1125.65, 1502.48, 1183.34, 1210.01; 1H-NMR (DMSO-d6, 

Figure 2. Scheme of synthesis for 6-fluoro-triazolo-benzothiazole analogues.
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300 MHz) d ppm: 7.15–7.83 (m, 5H, Ar), 1.98 (m, 3H, 
CH3) 3.18 (s, 2H, CH2), 3.01–3.47 (m, 4H, CH2); 

13C-NMR 
(CDCl3, 100 MHz) d ppm: 24.6, 41.7, 56.1, 56.3, 60.4, 64.2, 
64.5, 104.5, 105.7, 113.4, 127.2, 127.7, 128.4, 129.4, 129.9, 
132.6, 136.6, 141.8, 143.2; MS (m/z), M+: 449.32.

6-f luoro-(4-pyrrolidinyl)-3-[(4-methylphenyl)sul-
phonyl]-3,3a-dihydro [1,2,4]triazolo [5,1-b] [1,3] benz-
thiazol-5-amine (TZ6): Yield: 51.5%; cream; mp: 176–
178 °C; mf: C19H19FN4O2S2; mw: 418.50; Rf = 0.87 (EtOAc: 
n-But:CHCl3 2:1:1); FT-IR (KBr, cm-1): 1301.20, 1558.51, 
1637.68, 1084.45, 1493.29, 1137.87, 1204.60; 1H-NMR 
(DMSO-d6, 300 MHz) d ppm: 6.78–6.85 (m, 6H, Ar), 
3.00 (m, 3H, CH3) 1.99 (m, 2H, CH2), 2.96–3.47 (m, 4H, 
CH2); 13C-NMR (CDCl3, 100 MHz) d ppm: 24.6, 25.2, 
25.5, 51.2, 51.8, 60.4, 104.7, 104.8, 105.4, 112.3, 126.3, 
126.9, 127.8, 129.3, 129.8, 132.5, 136.2, 140.5, 142.4; MS 
(m/z), M+: 418.27.

6-fluoro-N-diethylamino-3-[(4-methylphenyl)sulfo-
nyl]-3,3a-dihydro [1,2,4] triazolo [5,1-b] [1,3] benzothi-
azol-5-amine (TZ7): Yield: 63.7%, blue; mp: 110–112 °C; 
mf: C19H21FN4O2S2; mw: 420.52; Rf = 0.52 (EtOAc : 
n-But: CHCl3 2:1:1); FT-IR (KBr, cm-1): 1310.21, 1522.57, 
1685.01, 1107.27, 1524.84, 1098.21, 1267.47; 1H-NMR 
(DMSO-d6, 300 MHz) d ppm: 7.04 -7.34 (m, 5H, Ar), 2.04 
- 3.64 (m, 6H, CH3) 2.97 (m, 4H, CH2); 13C-NMR (CDCl3, 
100 MHz) d ppm: 24.15, 43.1, 52.3, 54.8, 61.2, 64.8, 64.9, 
101.3, 104.3, 112.6, 123.4, 127.4, 128.3, 128.7, 129.4, 131.2, 
133.8, 141.8, 144.9; MS (m/z), M+: 420.12.

1-[6-fluoro-7-(4-phenethyl amino)-3-[4-methyl phe-
nyl] sulphonyl]-3,3a dihydro [1, 2, 4] triazole [5,1-b] 
[1,3] benzothiazole (TZ8): Yield: 57.9%; green; mp: 116–
119 °C; mf: C23H21FN4O2S2; mw: 468.56; Rf = 0.72 (EtO-
Ac: n-Bu1: CHCl3: 2:1:1); FT-IR (KBr, cm-1): 1317.34, 
1503.04, 1621.27, 1089.57, 1457.14, 1200.62, 1243.18; 
1H-NMR (DMSO-d6, 300 MHz) d ppm: 7.07–7.64 (m, 
11H, Ar), 3.05–3.83 (m, 4H, CH2) 7.68 (s, H, NH) 3.08 

(m, 3H, CH3); 13C-NMR (CDCl3, 100 MHz) d ppm: 23.4, 
25.3, 44.8, 53.6, 60.8, 62.7, 69.4, 103.5, 106.7, 110.2, 114.6, 
124.6, 127.6, 128.9, 129.1, 129.6, 129.8, 130.4, 132.7, 134.8, 
1412.3, 144.6, 148.3; MS (m/z), M+: 468.25.

6-fluoro-3-[(4-methyl phenyl) sulfonyl]-5-(naphthyl 
amino)-3,3a-dihydro[1,2,4] triazolo [5,1- b] [1,3] Benzo-
thiazole (TZ9): Yield:63.78%; violet; mp: 155–158 °C; mf: 
C25H19FN4O2S2; mw: 490.57; Rf = 0.91 (EtOAc: n-Bul:CH-
Cl3: 2:1:1); FT-IR (KBr, cm-1): 1314.47, 1582.17, 1605.23, 
1041.89, 1487.24, 1317.27, 1151.07; 1H-NMR (DMSO-d6, 
300 MHz) d ppm: 7.13–7.82 (m, 6H, aromatic), 3.14–
3.57 (m, 4H, CH2) 9.27 (s, 4H, NH) 2.37 (m, 3H, CH3); 
13C-NMR (CDCl3, 100 MHz) d ppm: 21.3, 23.5, 26.4, 
27.6, 40.6, 45.7, 61.2, 64.3, 84.5, 102.3, 108.4, 110.8, 116.2, 
125.3, 126.4, 126.8, 128.6, 128.9, 129.5, 130.2, 130.6, 130.9, 
131.2, 133.4, 1491.57; MS (m/z), M+: 490.30.

Evaluation of antimitotic activity

The antimitotic activity was evaluated according to a 
previously reported method (Raheel et al. 2017). For six 
hours, the average weight of mung beans was steeped in 
the standard, control, and test solutions. The solution 
was drained after six hours and the radical, which is 1.0–
1.5 cm long was measured. Mass, radical length and seed 
germination were recorded.

Molecular docking

Molecular docking was performed on PyRx 0.8 plat-
form (Ghosh et al. 2021; Junejo et al. 2021; James et al. 
2022; Archana et al. 2023; Celik et al. 2023; Devasia et al. 
2023). PyRx determines ligand-protein binding affinity 
in molecular docking (Rudrapal et al. 2022a; Rudrapal et 
al. 2022b; Rudrapal et al. 2022c; Rudrapal et al. 2022d; 
Rudrapal et al. 2022e; Zothantluanga et al. 2022; Rudra-

Table 1. Antimitotic data of synthesized compounds.

Sl. 
No.

Compound 
code

Name of drug and 
concentration

Initial weight 
(gms)

Weight at Drain radical length No. of seeds germinated % seeds germinated
To (gm) T48 (gm) To(cm) T48 (cm) To T48 To T48

1 TZ1 1 mg 1.52 2.63 3.89 1.29 1.38 9 11 50% 60%
3 mg 1.54 3.17 4.21 1.19 1.30 12 14 55% 65%

2. TZ2 1 mg 1.56 3.21  4.52 1.12 1.25 11 12 50% 65%
3 mg 1.54 3.52 4.12 0.81 1.06 12 13 55% 60%

3. TZ3 1 mg 1.52 3.12 4.21 1.00 1.12 7 9 35% 45%
3 mg 1.54 2.25 3.74 0.89 1.21 9 11 40% 45%

4. TZ4 1 mg 1.54 3.09 3.99 0.78 0.84 9 11 50% 60%
3 mg 1.55 3.13 3.89 0.52 0.72 10 12 55% 65%

5. TZ5 1 mg 1.55 3.48 3.85 0.69 0.89 9 10 50% 65%
3 mg 1.56 3.24 3.98 0.71 0.74 10 11 55% 60%

6. TZ6 1 mg 1.54 2.48 3.61 0.72 0.79 9 10 50% 55%
3 mg 1.52 3.04 3.94 0.74 0.82 10 11 40% 55%

7. TZ7 1 mg 1.55 3.34 4.18 0.89 1.14 9 10 40% 50%
3 mg 1.54 3.42 3.99 0.86 0.83 10 11 40% 55%

8. TZ8 1 mg 1.52 3.45 3.75 0.89 0.86 8 10 45% 55%
3 mg 1.55 3.51 3.81 0.85 0.94 9 11 40% 55%

9. TZ9 1 mg 1.52 2.73 3.93 1.32 1.45 10 12 50% 60%
3 mg 1.54 3.07 4.02 1.25 1.32 11 13 55% 65%

10. Standard 
Aspirin

1 mg 1.56 3.64 4.32 0.52 0.58 7 9 35% 45%
3 mg 1.54 3.42 4.12 0.58 0.62 6 8 30% 40%

11. Control 1.56 3.52 4.32 1.05 0.98 9 11 45% 55%
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pal et al. 2023). Tubulin protein (PDB: 6QQN) was used 
at a resolution of 1.50 Å. The size of grid box was 0.3750 
Å. The 200 step MMFF94 force field with an RMS gradi-
ent of 0.1 was used for the study. The protein’s binding site 
(grid box) was chosen first to perform docking (Othman 
et al. 2021; Kumar et al. 2022; Kumar et al. 2023; Pasala 
et al. 2022a; Pasala et al. 2022b; Rashid et al. 2022; Issa-
haku et al. 2023; Paul et al. 2023). All synthesized ligands 
were docked in the active site of the protein molecule. 
The PyRx score classified all ligands by binding affinity. 
The ligands were categorized by their binding energies.

Results and discussion
Chemistry

Fig. 2 shows the synthetic strategy of 6-fluoro triazo-
lo-benzothiazole derivatives (TZ1–TZ9). The final com-
pounds are derivatives of 8-chloro-7-fluoro-1-[4-methyl-
phenyl]sulphonyl-1,9a-dihydro[1,2,4]triazolo[3,4-b][1,3]
benzothiazole. As presented in the experimental section, 
FT-IR, 1H-NMR, and MS data supported the structure of 
synthesized compounds.

Antimitotic activity

Anti-mitotic activity was tested for all the compounds 
(TZ1–TZ9) (Table 1). Aspirin was used as standard com-
pound at 1 and 3 mg/mL. Results revealed that TZ2 and 
TZ9 were the most active opposing the standard drug. 
TZ1, TZ7, and TZ4 also exhibited appreciable activity. 
In vitro anticancer drug screening requires antimitotic 
action. In the present study, the mitotic index of 6-fluoro 
triazolo-benzothiazole analogues indicates the efficacy 
of compounds in inhibiting the proliferation of cancer 
cells either by promoting microtubule formation or af-
fecting microtubules, thereby preventing microtubule 
breakdown. This causes the cells to become so congest-
ed with microtubules that they can no longer divide and 
develop. As a result, cells stop dividing and eventually 
perish via apoptosis.

Docking assessment

The three-dimensional structure of tubulin and guanosine 
triphosphate (PDB: 6QQN) was used in the study. Prior 
to docking active site amino acid residues were identified. 
The following amino acids viz., Gln146, Thr145, Gln11, 
Ser178, Ala180, Asn101, Asp98, Glu71, Ser140, Gln144, 
Gln143, Ala100, ASP69, Tyr224, Ser140, and Ala99 are 
present in the catalytic pocket of the protein molecule, as 
shown in Fig. 3. Ramachandran map verified the protein, 
as represented in Fig. 4.

PyRx calculated binding energies of protein-ligand 
complexes. The protein-ligand interaction is a measure of 
binding affinity. The binding affinity of TZ9 (-10.9 kcal/
mol) was the highest among the selected molecules whose 
binding energy was greater than that of standard aspirin 

(-6.5 kcal/mol) and co-crystal ligand (guanosine triphos-
phate) (-8.2 kcal/mol). Table 2 presents two dimension-
al (2D) interactions between ligands (TZ1–TZ9) and 
6QQN. Fig. 5a–d displays two dimensional (2D) interac-
tions between TZ2 and 6QQN, TZ9 with 6QQN, aspirin 
and 6QQN, and guanosine triphosphate with 6QQN.

Conclusion

In this work, nine 6- fluoro-triazolo-benzothiazole deriva-
tives were prepared and evaluated for in vitro antimitotic ac-
tivity. In addition, in silico study was also done using tubulin 
protein (PDB: 6QQN) by molecular docking method. The 
antimitotic study indicates the efficacy of triazolo-benzothi-
azole analogues in inhibiting the proliferation of cancer cells 
either by promoting microtubule formation or affecting mi-
crotubules, thereby preventing microtubule breakdown.

Conflict of interest
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Figure 3. Amino acids present in the active site of the catalytic 
pocket of the tubulin receptor (PDB id: 6QQN).

Figure 4. Ramachandran plot of tubulin receptor (PDB id: 
6QQN).
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Table 2. Compounds and their binding energies.

Sl. No. Compound code Binding energy (kcal/mole) No. of hydrogen bonds Ligand group Interacting amino acid residue

1 TZ1 -9.7 4

HN

NH2

 

Ser178, Gln77, Ser140, Gln11

2 TZ2 -9.8 4

HN
CH

HOOC

CH2

OH  

Asp69, Gln11, Ser140, Ser178

3 TZ3 -8.7 3

HN

OHO  

Tyr224, Glu22, Ala19

4 TZ4 -8.3 3

OCH3

HN

 

Ser140, Tyr224, Ser178

5 TZ5 -8.5 2
N

O  

Val177, Ser140

6 TZ6 -8.7 1
N

 

Ser140

7 TZ7 -7.9 2
N

H5C2 C2H5 
Arg229, Gln15

8 TZ8 -8.4 3

NH

CH2CH2

 

Thr82, Glu77, Gln15

9 TZ9 -10.1 4

NH

 

Ala12, Gln11, Ser140, Asn101

10 Aspirin -6.5 1

O OH

O

O
 

Asn206
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Figure 5. (a) 2D interaction of TZ2 on 6QQN, (b) 2D interaction of TZ9 on 6QQN, (c) 2D interaction of aspirin on 6QQN, and 
(d) 2D interaction of guanosine triphosphate on 6QQN.
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